Suppr超能文献

一种用于提高……中氢气产量的定向基因组进化方法。 (原文中“in”后面内容缺失)

A directed genome evolution method to enhance hydrogen production in .

作者信息

Barahona Emma, Isidro Elisa San, Sierra-Heras Laura, Álvarez-Melcón Inés, Jiménez-Vicente Emilio, Buesa José María, Imperial Juan, Rubio Luis M

机构信息

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain.

Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.

出版信息

Front Microbiol. 2022 Aug 24;13:991123. doi: 10.3389/fmicb.2022.991123. eCollection 2022.

Abstract

Nitrogenase-dependent H production by photosynthetic bacteria, such as , has been extensively investigated. An important limitation to increase H production using genetic manipulation is the scarcity of high-throughput screening methods to detect possible overproducing mutants. Previously, we engineered strains that emitted fluorescence in response to H and used them to identify mutations in the nitrogenase Fe protein leading to H overproduction. Here, we used ultraviolet light to induce random mutations in the genome of the engineered H-sensing strain, and fluorescent-activated cell sorting to detect and isolate the H-overproducing cells from libraries containing 5 × 10 mutants. Three rounds of mutagenesis and strain selection gradually increased H production up to 3-fold. The whole genomes of five H overproducing strains were sequenced and compared to that of the parental sensor strain to determine the basis for H overproduction. No mutations were present in well-characterized functions related to nitrogen fixation, except for the transcriptional activator . However, several mutations mapped to energy-generating systems and to carbon metabolism-related functions, which could feed reducing power or ATP to nitrogenase. Time-course experiments of nitrogenase depression in batch cultures exposed mismatches between nitrogenase protein levels and their H and ethylene production activities that suggested energy limitation. Consistently, cultivating in a chemostat produced up to 19-fold more H than the corresponding batch cultures, revealing the potential of selected H overproducing strains.

摘要

诸如光合细菌通过固氮酶产生氢气的过程已得到广泛研究。利用基因操作提高氢气产量的一个重要限制是缺乏高通量筛选方法来检测可能的高产突变体。此前,我们构建了对氢气有荧光响应的菌株,并利用它们来鉴定导致氢气高产的固氮酶铁蛋白中的突变。在此,我们用紫外线诱导工程化的氢气感应菌株基因组发生随机突变,并通过荧光激活细胞分选从含有5×10个突变体的文库中检测和分离出高产氢气的细胞。三轮诱变和菌株筛选使氢气产量逐渐提高至三倍。对五个高产氢气菌株的全基因组进行测序,并与亲本感应菌株的基因组进行比较,以确定氢气高产的基础。除转录激活因子外,在与固氮相关的已充分表征的功能中未发现突变。然而,有几个突变定位于能量产生系统和与碳代谢相关的功能,这些功能可以为固氮酶提供还原力或ATP。分批培养中固氮酶抑制的时间进程实验揭示了固氮酶蛋白水平与其氢气和乙烯产生活性之间的不匹配,这表明存在能量限制。一致地,在恒化器中培养产生的氢气比相应的分批培养多19倍,这揭示了所选高产氢气菌株的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42dc/9449697/fb990120aa2f/fmicb-13-991123-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验