Zhang Wanzheng, Guillén-Soler Melanie, Moreno-Da Silva Sara, López-Moreno Alejandro, González Luisa R, Giménez-López María Del Carmen, Pérez Emilio M
IMDEA Nanociencia C/ Faraday 9 Madrid 28049 Spain
CIQUS, Universidad de Santiago de Compostela Rua Jenaro de la Fuente Santiago de Compostela 15782 Spain
Chem Sci. 2022 Jul 25;13(33):9706-9712. doi: 10.1039/d2sc02346f. eCollection 2022 Aug 24.
Substitutional N-doping of single-walled carbon nanotubes is a common strategy to enhance their electrocatalytic properties in the oxygen-reduction reaction (ORR). Here, we explore the encapsulation of SWNTs within N-rich macrocycles as an alternative strategy to display electroactive sites on the surface of SWNTs. We design and synthesize four types of mechanically interlocked derivatives of SWNTs (MINTs) by combining two types of macrocycles and two types of SWNT samples. Comprehensive electrochemical characterization of these MINTs and their reference SWNTs allows us to establish structure-activity relationships. First, we show that all MINT samples are superior electrocatalysts compared to pristine SWNTs, which serves as general validation of our strategy. Secondly, we show that macrocycles displaying both N atoms and carbonyl groups perform better than those with N atoms only. Finally, we demonstrate that a tighter fit between macrocycles and SWNTs results in enhanced catalytic activity and stability, most likely due to a more effective charge-transfer between the SWNTs and the macrocycles. These results, focusing on the ORR as a testbed, show the possibility of understanding electrocatalytic performance of SWNTs at the molecular level and thus enable the design of more active and more stable catalysts in the future.
单壁碳纳米管的取代型氮掺杂是增强其在氧还原反应(ORR)中电催化性能的常用策略。在此,我们探索将单壁碳纳米管封装在富含氮的大环化合物中,作为在单壁碳纳米管表面展示电活性位点的替代策略。我们通过结合两种类型的大环化合物和两种类型的单壁碳纳米管样品,设计并合成了四种类型的单壁碳纳米管机械互锁衍生物(MINTs)。对这些MINTs及其参考单壁碳纳米管进行全面的电化学表征,使我们能够建立结构-活性关系。首先,我们表明,与原始单壁碳纳米管相比,所有MINT样品都是更优异的电催化剂,这为我们的策略提供了总体验证。其次,我们表明,同时含有氮原子和羰基的大环化合物比仅含氮原子的大环化合物表现更好。最后,我们证明,大环化合物与单壁碳纳米管之间更紧密的契合导致催化活性和稳定性增强,这很可能是由于单壁碳纳米管与大环化合物之间更有效的电荷转移。这些以氧还原反应为测试平台的结果,展示了在分子水平上理解单壁碳纳米管电催化性能的可能性,从而为未来设计更具活性和更稳定的催化剂提供了可能。