Moreno-Da Silva Sara, Martínez Jesús I, Develioglu Aysegul, Nieto-Ortega Belén, de Juan-Fernández Leire, Ruiz-Gonzalez Luisa, Picón Antonio, Oberli Soléne, Alonso Pablo J, Moonshiram Dooshaye, Pérez Emilio M, Burzurí Enrique
IMDEA Nanociencia, Campus de Cantoblanco, Calle Faraday 9, 28049 Madrid, Spain.
Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza and CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain.
J Am Chem Soc. 2021 Dec 22;143(50):21286-21293. doi: 10.1021/jacs.1c07058. Epub 2021 Nov 26.
Atomic-scale reproducibility and tunability endorse magnetic molecules as candidates for spin qubits and spintronics. A major challenge is to implant those molecular spins into circuit geometries that may allow one, two, or a few spins to be addressed in a controlled way. Here, the formation of mechanically bonded, magnetic porphyrin dimeric rings around carbon nanotubes (mMINTs) is presented. The mechanical bond places the porphyrin magnetic cores in close contact with the carbon nanotube without disturbing their structures. A combination of spectroscopic techniques shows that the magnetic geometry of the dimers is preserved upon formation of the macrocycle and the mMINT. Moreover, the metallic core selection determines the spin location in the mMINT. The suitability of mMINTs as qubits is explored by measuring their quantum coherence times (). Formation of the dimeric ring preserves the found in the monomer, which remains in the μs scale for mMINTs. The carbon nanotube is used as vessel to place the molecules in complex circuits. This strategy can be extended to other families of magnetic molecules. The size and composition of the macrocycle can be tailored to modulate magnetic interactions between the cores and to introduce magnetic asymmetries (heterometallic dimers) for more complex molecule-based qubits.
原子尺度的可重复性和可调性使磁性分子成为自旋量子比特和自旋电子学的候选者。一个主要挑战是将这些分子自旋植入电路几何结构中,从而能够以可控方式对一个、两个或几个自旋进行寻址。在此,展示了围绕碳纳米管形成机械键合的磁性卟啉二聚体环(mMINTs)。机械键使卟啉磁核与碳纳米管紧密接触,同时不干扰它们的结构。多种光谱技术相结合表明,在大环和mMINT形成时,二聚体的磁性几何结构得以保留。此外,金属核的选择决定了mMINT中自旋的位置。通过测量它们的量子相干时间()来探索mMINTs作为量子比特的适用性。二聚体环的形成保留了单体中的,对于mMINTs来说,其仍处于微秒尺度。碳纳米管用作将分子放置在复杂电路中的容器。这种策略可扩展到其他磁性分子家族。大环的尺寸和组成可以进行调整,以调节磁核之间的磁相互作用,并引入磁不对称性(异金属二聚体),用于构建更复杂的基于分子的量子比特。