Suppr超能文献

人碳酸酐酶同工酶II和IX的结构与动力学

Structure and Dynamics of the Isozymes II and IX of Human Carbonic Anhydrase.

作者信息

Rai Divya, Khatua Satyajit, Taraphder Srabani

机构信息

Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.

出版信息

ACS Omega. 2022 Aug 24;7(35):31149-31166. doi: 10.1021/acsomega.2c03356. eCollection 2022 Sep 6.

Abstract

Human carbonic anhydrases (HCAs) are responsible for the pH control and sensing in our body and constitute key components in the central pH paradigm connected to cancer therapeutics. However, little or no molecular level studies are available on the pH-dependent stability and functional dynamics of the known isozymes of HCA. The main objective of this Article is to report the first bench-marking study on the structure and dynamics of the two most efficient isozymes, HCA II and IX, at neutral pH using classical molecular dynamics (MD) and constant pH MD (CpHMD) simulations combined with umbrella sampling, transition path sampling, and Markov state models. Starting from the known crystal structures of HCA II and the monomeric catalytic domain of HCA IX (labeled as HCA IX-c), we have generated classical MD and CpHMD trajectories (of length 1 μs each). In all cases, the overall stability, RMSD, and secondary structure segments of the two isozymes are found to be quite similar. Functionally important dynamics of these two enzymes have been probed in terms of active site hydration, coordination of the Zn(II) ion to a transient excess water, and the formation of putative proton transfer paths. The most important difference between the two isozymes is observed for the side-chain fluctuations of His-64 that is expected to shuttle an excess proton out of the active site as a part of the rate-determining intramolecular proton transfer reaction. The relative stability of the stable inward and outward conformations of the His-64 side-chain and the underlying free energy surfaces are found to depend strongly on the isozyme. In each case, a lower free energy barrier is detected between predominantly inward conformations from predominantly outward ones when simulated under constant pH conditions. The kinetic rate constants of interconversion between different free energy basins are found to span 10-10 s with faster conformational transitions predicted at constant pH condition. The estimated rate constants and free energies are expected to validate if the fluctuation of the His-64 side-chain in HCA IX may have a significance similar to that known in the multistep catalytic cycle of HCA II.

摘要

人类碳酸酐酶(HCAs)负责调节人体的pH值并感知pH变化,是与癌症治疗相关的核心pH范式中的关键组成部分。然而,关于已知HCA同工酶的pH依赖性稳定性和功能动力学的分子水平研究很少,甚至没有。本文的主要目的是报告第一项基准研究,该研究使用经典分子动力学(MD)和恒定pH分子动力学(CpHMD)模拟,并结合伞形采样、过渡路径采样和马尔可夫状态模型,研究了两种最有效的同工酶HCA II和IX在中性pH下的结构和动力学。从HCA II的已知晶体结构和HCA IX的单体催化结构域(标记为HCA IX-c)出发,我们生成了经典MD和CpHMD轨迹(每条长度为1 μs)。在所有情况下,发现这两种同工酶的整体稳定性、均方根偏差(RMSD)和二级结构片段非常相似。通过活性位点水合、Zn(II)离子与瞬态过量水的配位以及假定质子转移路径的形成,对这两种酶的功能重要动力学进行了研究。观察到这两种同工酶之间最重要的差异在于His-64的侧链波动,预计它作为限速分子内质子转移反应的一部分,将过量质子从活性位点转移出去。发现His-64侧链稳定的向内和向外构象的相对稳定性以及潜在的自由能表面强烈依赖于同工酶。在每种情况下,在恒定pH条件下模拟时,从主要向外构象到主要向内构象检测到较低的自由能垒。发现不同自由能盆地之间相互转换的动力学速率常数跨度为10-10 s,预计在恒定pH条件下构象转变更快。估计的速率常数和自由能有望验证HCA IX中His-64侧链的波动是否可能具有与HCA II多步催化循环中已知的类似意义。

相似文献

1
Structure and Dynamics of the Isozymes II and IX of Human Carbonic Anhydrase.
ACS Omega. 2022 Aug 24;7(35):31149-31166. doi: 10.1021/acsomega.2c03356. eCollection 2022 Sep 6.
2
pH-Dependent Structure and Dynamics of the Catalytic Domains of Human Carbonic Anhydrase II and IX.
J Phys Chem B. 2023 Dec 7;127(48):10279-10294. doi: 10.1021/acs.jpcb.3c04721. Epub 2023 Nov 20.
5
Coordination Dynamics of Zinc Triggers the Rate Determining Proton Transfer in Human Carbonic Anhydrase II.
Chemphyschem. 2020 Jul 2;21(13):1455-1473. doi: 10.1002/cphc.202000177. Epub 2020 Jun 2.
7
Role of hydrophilic residues in proton transfer during catalysis by human carbonic anhydrase II.
Biochemistry. 2008 Nov 18;47(46):12028-36. doi: 10.1021/bi801473w. Epub 2008 Oct 23.
10
Carbonic anhydrase inhibitors. Interaction of isozymes I, II, IV, V, and IX with carboxylates.
Bioorg Med Chem Lett. 2005 Feb 1;15(3):573-8. doi: 10.1016/j.bmcl.2004.11.057.

引用本文的文献

2
Design and synthesis of novel coumarin-benzimidazole hybrids as human galectin-1 inhibitors.
Future Med Chem. 2024;16(9):843-857. doi: 10.4155/fmc-2023-0273. Epub 2024 Apr 12.
3
Energetics and dynamics of the proton shuttle of carbonic anhydrase II.
Cell Mol Life Sci. 2023 Sep 9;80(10):286. doi: 10.1007/s00018-023-04936-z.

本文引用的文献

2
Anticancer carbonic anhydrase inhibitors: a patent and literature update 2018-2022.
Expert Opin Ther Pat. 2022 Aug;32(8):833-847. doi: 10.1080/13543776.2022.2083502. Epub 2022 Jun 2.
3
Nonlinear Reaction Coordinate of an Enzyme Catalyzed Proton Transfer Reaction.
J Phys Chem B. 2022 Feb 24;126(7):1413-1425. doi: 10.1021/acs.jpcb.1c08760. Epub 2022 Feb 9.
5
Carbonic anhydrase inhibitors: an update on experimental agents for the treatment and imaging of hypoxic tumors.
Expert Opin Investig Drugs. 2021 Dec;30(12):1197-1208. doi: 10.1080/13543784.2021.2014813. Epub 2021 Dec 13.
6
Time-Lagged Independent Component Analysis of Random Walks and Protein Dynamics.
J Chem Theory Comput. 2021 Sep 14;17(9):5766-5776. doi: 10.1021/acs.jctc.1c00273. Epub 2021 Aug 27.
7
Unsupervised Learning Methods for Molecular Simulation Data.
Chem Rev. 2021 Aug 25;121(16):9722-9758. doi: 10.1021/acs.chemrev.0c01195. Epub 2021 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验