Suppr超能文献

基于基因的网络分析揭示了与糖尿病肾小管间质损伤相关的预后生物标志物。

Gene-Based Network Analysis Reveals Prognostic Biomarkers Implicated in Diabetic Tubulointerstitial Injury.

机构信息

Department of Nephrology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.

Department of Pathology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.

出版信息

Dis Markers. 2022 Aug 31;2022:2700392. doi: 10.1155/2022/2700392. eCollection 2022.

Abstract

BACKGROUND

Diabetic nephropathy (DN), a significant cause of chronic kidney disease (CKD), is a devastating disease worldwide.

OBJECTIVE

The aim of this study was to reveal crucial genes closely linked to the molecular mechanism of tubulointerstitial injury in DN.

METHODS

The Gene Expression Omnibus (GEO) database was used to download the datasets. Based on this, a weighted gene coexpression network analysis (WGCNA) network was constructed to detect DN-related modules and hub genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichments were performed on the selected hub genes and modules. Least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed on the obtained gene signature.

RESULTS

The WGCNA network was constructed based on 3019 genes, and nine gene coexpression modules were generated. A total of 57 genes, including 34 genes in the magenta module and 23 genes in the purple module, were adapted as hub genes. 61 significantly downregulated and 119 upregulated genes were screened as differentially expressed genes (DEGs). 25 overlapping genes between hub genes chosen from WGCNA and DEG were identified. Through LASSO analysis, a 9-gene signature may be a potential prognostic biomarker for DN. To further explore the potential mechanism of DN, the different immune cell infiltrations between tubulointerstitial samples of DN and healthy samples were estimated.

CONCLUSIONS

This bioinformatics study identified CX3CR1, HRG, LTF, TUBA1A, GADD45B, PDK4, CLIC5, NDNF, and SOCS2 as candidate biomarkers for the diagnosis of DN. Moreover, DN tends to own a higher proportion of memory B cell.

摘要

背景

糖尿病肾病(DN)是慢性肾脏病(CKD)的一个重要原因,是一种全球性的破坏性疾病。

目的

本研究旨在揭示与 DN 肾小管间质损伤分子机制密切相关的关键基因。

方法

利用基因表达综合数据库(GEO)下载数据集。在此基础上,构建加权基因共表达网络分析(WGCNA)网络,以检测与 DN 相关的模块和枢纽基因。对选定的枢纽基因和模块进行基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析。对获得的基因特征进行最小绝对收缩和选择算子(LASSO)Cox 回归分析。

结果

基于 3019 个基因构建了 WGCNA 网络,生成了 9 个基因共表达模块。共筛选出 57 个枢纽基因,其中包括magenta 模块中的 34 个基因和 purple 模块中的 23 个基因。筛选出 61 个显著下调基因和 119 个上调基因作为差异表达基因(DEG)。从 WGCNA 中选择的枢纽基因和 DEG 之间有 25 个重叠基因。通过 LASSO 分析,9 个基因的特征可能是 DN 的潜在预后生物标志物。为了进一步探讨 DN 的潜在机制,估计了 DN 肾小管间质样本和健康样本之间不同免疫细胞的浸润情况。

结论

本生物信息学研究鉴定出 CX3CR1、HRG、LTF、TUBA1A、GADD45B、PDK4、CLIC5、NDNF 和 SOCS2 可作为诊断 DN 的候选生物标志物。此外,DN 倾向于拥有更高比例的记忆 B 细胞。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验