Li Jianmin, Zhao Yuqi, Li Chuang, Wang Shaoying, Chen Xueling, Gong Junbo, Wang Xiaomin, Xiao Xudong
Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology Wuhan University Wuhan 430072 China.
Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronics Engineering Key Laboratory of Optoelectronic Devices and Systems Shenzhen University Shenzhen 518060 China.
Adv Sci (Weinh). 2022 Jun 26;9(25):2202356. doi: 10.1002/advs.202202356. eCollection 2022 Sep.
Antimony selenosulfide (Sb(S,Se)), a simple alloyed compound containing earth-abundant constituents, with a tunable bandgap and high absorption coefficient has attracted significant attention in high-efficiency photovoltaic applications. Optimizing interfacial defects and absorber layers to a high standard is essential in improving the efficiency of Sb(S,Se) solar cells. In particular, the electron transport layer (ETL) greatly affects the final device performance of the superstrate structure. In this study, a simple and effective hydrazine hydrate (NH) solution post-treatment is proposed to modify CdS ETL in order to enhance Sb(S,Se) solar cell efficiency. By this process, oxides and residual chlorides, caused by CdCl treated CdS under a high temperature over 400 °C in air, are appropriately removed, rendering smoother and flatter CdS ETL as well as high-quality Sb(S,Se) thin films. Furthermore, the interfacial energy band alignment and recombination loss are both improved, resulting in an as-fabricated FTO/CdS-NH/Sb(S,Se)/spiro-OMeTAD/Au solar cell with a high PCE of 10.30%, placing it in the top tier of Sb-based solar devices. This study provides a fresh perspective on interfacial optimization and promotes the future development of antimony chalcogenide-based planar solar cells.
硒硫化锑(Sb(S,Se))是一种含有储量丰富元素的简单合金化合物,具有可调节的带隙和高吸收系数,在高效光伏应用中备受关注。将界面缺陷和吸收层优化至高标准对于提高Sb(S,Se)太阳能电池的效率至关重要。特别是,电子传输层(ETL)对超strate结构的最终器件性能有很大影响。在本研究中,提出了一种简单有效的水合肼(NH)溶液后处理方法来修饰CdS ETL,以提高Sb(S,Se)太阳能电池的效率。通过该过程,适当去除了在空气中400°C以上高温下CdCl处理的CdS所产生的氧化物和残留氯化物,使CdS ETL更光滑平整,同时获得高质量的Sb(S,Se)薄膜。此外,界面能带对准和复合损失均得到改善,从而制备出的FTO/CdS-NH/Sb(S,Se)/spiro-OMeTAD/Au太阳能电池具有10.30%的高光电转换效率(PCE),使其跻身基于锑的太阳能器件的顶级行列。本研究为界面优化提供了新的视角,并推动了基于锑硫属化物的平面太阳能电池的未来发展。