Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
ELKH-DE Neuroscience Research Group, Debrecen, Hungary.
J Comp Neurol. 2022 Dec;530(18):3270-3287. doi: 10.1002/cne.25413. Epub 2022 Sep 12.
Our knowledge about the detailed wiring of neuronal circuits in the spinal dorsal horn (DH), where initial sensory processing takes place, is still very sparse. While a substantial amount of data is available on the somatodendritic morphology of DH neurons, the laminar and segmental distribution patterns and consequential function of individual axons are much less characterized. In the present study, we fully reconstructed the axonal and dendritic processes of 10 projection neurons (PNs) and 15 interneurons (INs) in lamina I of the rat, to reveal quantitative differences in their distribution. We also performed whole-cell patch-clamp recordings to test the predicted function of certain axon collaterals. In line with our earlier qualitative description, we found that lamina I INs in the lateral aspect of the superficial DH send axon collaterals toward the medial part and occupy mostly laminae I-III, providing anatomical basis for a lateromedial flow of information within the DH. Local axon collaterals of PNs were more extensively distributed including dorsal commissural axon collaterals that might refer to those reported earlier linking the lateral aspect of the left and right DHs. PN collaterals dominated the dorsolateral funiculus and laminae IV-VI, suggesting propriospinal and ventral connections. Indeed, patch-clamp recordings confirmed the existence of a dorsoventral excitatory drive upon activation of neurokinin-1 receptors that, although being expressed in various lamina I neurons, are specifically enriched in PNs. In summary, lamina I PNs and INs have almost identical dendritic input fields, while their segmental axon collateral distribution patterns are distinct. INs, whose somata reside in lamina I, establish local connections, may show asymmetry, and contribute to bridging the medial and lateral halves of the DH. PNs, on the other hand, preferably relay their integrated dendritic input to deeper laminae of the spinal gray matter where it might be linked to other ascending pathways or the premotor network, resulting in a putative direct contribution to the nociceptive withdrawal reflex.
我们对脊髓背角(DH)中初始感觉处理发生的神经元回路的详细布线的了解仍然非常匮乏。虽然已经有大量关于 DH 神经元的树突和树突形态的数据,但个别轴突的层状和节段分布模式及其相应的功能特征描述得要少得多。在本研究中,我们对 10 个投射神经元(PNs)和 15 个中间神经元(INs)在大鼠 I 层中的轴突和树突过程进行了完全重建,以揭示它们分布的定量差异。我们还进行了全细胞膜片钳记录,以测试某些轴突侧支的预测功能。与我们之前的定性描述一致,我们发现浅层 DH 外侧的 I 层 INs 向内侧部分发出轴突侧支,并主要占据 I-III 层,为 DH 内信息的左右侧流提供了解剖学基础。PNs 的局部轴突侧支分布更为广泛,包括背侧连合轴突侧支,这可能与之前报道的连接左右 DH 外侧的侧支有关。PN 侧支主要分布于背侧索和 IV-VI 层,提示与 propriospinal 和腹侧连接。事实上,膜片钳记录证实了神经激肽-1 受体激活后存在背腹侧兴奋性驱动,尽管该受体在各种 I 层神经元中表达,但在 PNs 中特异性富集。总之,I 层 PNs 和 INs 具有几乎相同的树突输入场,而它们的节段性轴突侧支分布模式则不同。INs 的胞体位于 I 层,建立局部连接,可能具有不对称性,并有助于桥接 DH 的内侧和外侧两半。另一方面,PNs 更倾向于将其整合的树突输入传递到脊髓灰质的更深层,在那里它可能与其他上行途径或运动前网络相连,从而对伤害性退缩反射做出直接贡献。