Academy of Arts and Design, Tsinghua University, Beijing, 10084, China.
The Future Laboratory, Tsinghua University, Beijing, 10084, China.
Brief Bioinform. 2022 Nov 19;23(6). doi: 10.1093/bib/bbac397.
MicroRNAs (miRNAs) are gene regulators involved in the pathogenesis of complex diseases such as cancers, and thus serve as potential diagnostic markers and therapeutic targets. The prerequisite for designing effective miRNA therapies is accurate discovery of miRNA-disease associations (MDAs), which has attracted substantial research interests during the last 15 years, as reflected by more than 55 000 related entries available on PubMed. Abundant experimental data gathered from the wealth of literature could effectively support the development of computational models for predicting novel associations. In 2017, Chen et al. published the first-ever comprehensive review on MDA prediction, presenting various relevant databases, 20 representative computational models, and suggestions for building more powerful ones. In the current review, as the continuation of the previous study, we revisit miRNA biogenesis, detection techniques and functions; summarize recent experimental findings related to common miRNA-associated diseases; introduce recent updates of miRNA-relevant databases and novel database releases since 2017, present mainstream webservers and new webserver releases since 2017 and finally elaborate on how fusion of diverse data sources has contributed to accurate MDA prediction.
微小 RNA(miRNAs)是参与癌症等复杂疾病发病机制的基因调节剂,因此可作为潜在的诊断标志物和治疗靶点。设计有效的 miRNA 治疗方法的前提是准确发现 miRNA-疾病关联(MDAs),这在过去 15 年中引起了大量的研究兴趣,PubMed 上有超过 55000 个相关条目对此进行了反映。从大量文献中收集的丰富实验数据可以有效地支持预测新关联的计算模型的开发。2017 年,Chen 等人发表了第一篇关于 MDA 预测的全面综述,介绍了各种相关数据库、20 个有代表性的计算模型,并提出了构建更强大模型的建议。在当前的综述中,作为前一篇研究的延续,我们重新审视了 miRNA 的生物发生、检测技术和功能;总结了与常见 miRNA 相关疾病相关的最新实验发现;介绍了自 2017 年以来 miRNA 相关数据库的最新更新和新数据库的发布,介绍了主流网络服务器和自 2017 年以来的新网络服务器发布情况,最后详细阐述了如何融合不同数据源以实现准确的 MDA 预测。