Suppr超能文献

利用泛癌相关模式预测微小RNA靶基因

Predicting microRNA target genes using pan-cancer correlation patterns.

作者信息

Lin Shuting, Qiu Peng

机构信息

School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, Georgia, USA.

Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, 30332, Georgia, USA.

出版信息

BMC Genomics. 2025 Jan 27;26(1):77. doi: 10.1186/s12864-025-11254-0.

Abstract

The interaction relationship between miRNAs and genes is important as miRNAs play a crucial role in regulating gene expression. In the literature, several databases have been constructed to curate known miRNA target genes, which are valuable resources but likely only represent a small fraction of all miRNA-gene interactions. In this study, we constructed machine learning models to predict miRNA target genes that have not been previously reported. Using the miRNA and gene expression data from TCGA, we performed a correlation analysis between all miRNAs and all genes across multiple cancer types. The correlations served as features to describe each miRNA-gene pair. Using the existing databases of curated miRNA targets, we labeled the miRNA-gene pairs, and trained machine learning models to predict novel miRNA-gene interactions. For the miRNA-gene pairs that were consistently predicted across the models, we called them significant miRNA-gene pairs. Using held-out miRNA target databases and a literature survey, we validated 5.5% of the predicted significant miRNA-gene pairs. The remaining predicted miRNA-gene pairs could serve as hypotheses for experimental validation. Additionally, we explored several additional datasets that provided gene expression data before and after a specific miRNA perturbation and observed consistency between the correlation direction of predicted miRNA-gene pairs and their regulatory patterns. Together, this analysis revealed a novel framework for uncovering previously unidentified miRNA-gene relationships, enhancing the collective comprehension of miRNA-mediated gene regulation.

摘要

由于微小RNA(miRNA)在调节基因表达中起着关键作用,因此miRNA与基因之间的相互作用关系很重要。在文献中,已经构建了几个数据库来整理已知的miRNA靶基因,这些数据库是有价值的资源,但可能仅代表所有miRNA-基因相互作用的一小部分。在本研究中,我们构建了机器学习模型来预测先前未报道的miRNA靶基因。利用来自癌症基因组图谱(TCGA)的miRNA和基因表达数据,我们对多种癌症类型中的所有miRNA和所有基因进行了相关性分析。这些相关性作为描述每个miRNA-基因对的特征。利用现有的经过整理的miRNA靶标数据库,我们对miRNA-基因对进行了标记,并训练机器学习模型来预测新的miRNA-基因相互作用。对于在各个模型中都被一致预测的miRNA-基因对,我们称它们为显著的miRNA-基因对。利用留出的miRNA靶标数据库和文献调查,我们验证了5.5%的预测显著miRNA-基因对。其余预测的miRNA-基因对可作为实验验证的假设。此外,我们探索了几个额外的数据集,这些数据集提供了特定miRNA扰动前后的基因表达数据,并观察到预测的miRNA-基因对的相关方向与其调控模式之间的一致性。总之,这项分析揭示了一个用于揭示先前未识别的miRNA-基因关系的新框架,增强了对miRNA介导的基因调控的总体理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d97/11773953/ae48492574ec/12864_2025_11254_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验