Suppr超能文献

毫米级地形促进珊瑚幼虫在波浪驱动的振荡流中的定着。

Millimeter-scale topography facilitates coral larval settlement in wave-driven oscillatory flow.

机构信息

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America.

Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America.

出版信息

PLoS One. 2022 Sep 12;17(9):e0274088. doi: 10.1371/journal.pone.0274088. eCollection 2022.

Abstract

Larval settlement in wave-dominated, nearshore environments is the most critical life stage for a vast array of marine invertebrates, yet it is poorly understood and virtually impossible to observe in situ. Using a custom-built flume tank that mimics the oscillatory fluid flow over a shallow coral reef, we isolated the effect of millimeter-scale benthic topography and showed that it increases the settlement of slow-swimming coral larvae by an order of magnitude relative to flat substrates. Particle tracking velocimetry of flow fields revealed that millimeter-scale ridges introduced regions of flow recirculation that redirected larvae toward the substrate surface and decreased the local fluid speed, effectively increasing the window of time for larvae to settle. Regions of recirculation were quantified using the Q-criterion method of vortex identification and correlated with the settlement locations of larvae for the first time. In agreement with experiments, computational fluid dynamics modeling and agent-based larval simulations also showed significantly higher settlement onto ridged substrates. Additionally, in contrast to previous reports on the effect of micro-scale substrate topography, we found that these topographies did not produce key hydrodynamic features linked to increased settlement. These findings highlight how physics-based substrate design can create new opportunities to increase larval recruitment for ecosystem restoration.

摘要

幼虫在波浪主导的近岸环境中的定殖是对大量海洋无脊椎动物来说是最关键的生命阶段,但人们对此知之甚少,实际上也不可能进行原位观察。我们使用一个定制的浅水槽来模拟浅珊瑚礁上的振荡流体流动,从而分离出毫米级海底地形的影响,并表明与平面基底相比,它将缓慢游动的珊瑚幼虫的定殖率提高了一个数量级。流场的粒子追踪测速技术显示,毫米级的脊线引入了流再循环区域,将幼虫重新引导到基底表面,并降低了局部流体速度,有效地增加了幼虫定殖的时间窗口。首次使用涡旋识别的 Q 准则方法对再循环区域进行了量化,并将其与幼虫的定殖位置相关联。与实验结果一致,计算流体动力学模型和基于代理的幼虫模拟也表明,在有脊的基底上,幼虫的定殖率显著提高。此外,与之前关于微尺度基底地形对幼虫定殖影响的报告相反,我们发现这些地形并没有产生与增加定殖率相关的关键水动力特征。这些发现强调了基于物理的基底设计如何为生态系统恢复创造增加幼虫补充的新机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6515/9467362/a154bd24496d/pone.0274088.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验