Suppr超能文献

Auto-DenseUNet:用于 3D 自动乳腺超声中肿块分割的可搜索神经网络结构。

Auto-DenseUNet: Searchable neural network architecture for mass segmentation in 3D automated breast ultrasound.

机构信息

School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, China.

School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, China.

出版信息

Med Image Anal. 2022 Nov;82:102589. doi: 10.1016/j.media.2022.102589. Epub 2022 Aug 23.

Abstract

Accurate segmentation of breast mass in 3D automated breast ultrasound (ABUS) plays an important role in breast cancer analysis. Deep convolutional networks have become a promising approach in segmenting ABUS images. However, designing an effective network architecture is time-consuming, and highly relies on specialist's experience and prior knowledge. To address this issue, we introduce a searchable segmentation network (denoted as Auto-DenseUNet) based on the neural architecture search (NAS) to search the optimal architecture automatically for the ABUS mass segmentation task. Concretely, a novel search space is designed based on a densely connected structure to enhance the gradient and information flows throughout the network. Then, to encourage multiscale information fusion, a set of searchable multiscale aggregation nodes between the down-sampling and up-sampling parts of the network are further designed. Thus, all the operators within the dense connection structure or between any two aggregation nodes can be searched to find the optimal structure. Finally, a novel decoupled search training strategy during architecture search is also introduced to alleviate the memory limitation caused by continuous relaxation in NAS. The proposed Auto-DenseUNet method has been evaluated on our ABUS dataset with 170 volumes (from 107 patients), including 120 training volumes and 50 testing volumes split at patient level. Experimental results on testing volumes show that our searched architecture performed better than several human-designed segmentation models on the 3D ABUS mass segmentation task, indicating the effectiveness of our proposed method.

摘要

在三维自动化乳腺超声(ABUS)中准确分割乳腺肿块对于乳腺癌分析至关重要。深度卷积网络已成为分割 ABUS 图像的一种很有前途的方法。然而,设计有效的网络架构需要大量时间,并且高度依赖专家的经验和先验知识。为了解决这个问题,我们引入了一种基于神经架构搜索(NAS)的可搜索分割网络(称为 Auto-DenseUNet),用于自动搜索 ABUS 肿块分割任务的最佳架构。具体来说,我们基于密集连接结构设计了一个新的搜索空间,以增强网络中的梯度和信息流。然后,为了鼓励多尺度信息融合,我们进一步设计了一组在网络的下采样和上采样部分之间的可搜索多尺度聚合节点。因此,可以搜索密集连接结构内或任何两个聚合节点之间的所有运算符,以找到最佳结构。最后,我们还在架构搜索期间引入了一种新的解耦搜索训练策略,以减轻 NAS 中连续松弛引起的内存限制。我们的 Auto-DenseUNet 方法已经在我们的 ABUS 数据集上进行了评估,该数据集包含 170 个卷(来自 107 名患者),包括 120 个训练卷和 50 个在患者级别上分割的测试卷。在测试卷上的实验结果表明,我们搜索到的架构在 3D ABUS 肿块分割任务上的性能优于几个人为设计的分割模型,这表明了我们提出的方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验