Suppr超能文献

尖孢镰刀菌萎蔫专化型引起美国堪萨斯州棉花枯萎病的首次报道

First Report of Fusarium oxysporum f. sp. vasinfectum causing Fusarium Wilt of Cotton in Kansas, U.S.A.

作者信息

Mokhtari Samira, Chavez Montserrat, Ali Akhtar

机构信息

University of Tulsa, Biological Science, 800 South Tucker Drive Tulsa, OK 74104, Tulsa, Oklahoma, United States, 74104;

The University of Tulsa, Biological Science, Tulsa, Oklahoma, United States;

出版信息

Plant Dis. 2022 Sep 12. doi: 10.1094/PDIS-08-22-1808-PDN.

Abstract

Fusarium wilt is one of the most devastating diseases of cotton (Gossypium spp.). It is caused by the soil-borne pathogen Fusarium oxysporum Schlechtend. f. sp. vasinfectum (Atk.) Snyd. & Hans (Atkinson, 1892). To date, eight races of F. oxysporum f. sp. vasinfectum have been reported worldwide based on their diverse genetics and reactions to the host (Cianchetta, et al. 2015). Fusarium wilt symptoms appear at all developing stages. The fungus enters through the roots and colonizes the vascular system, leading to discoloration and wilting (Davis et al. 2006). During a survey in the July 2021 growing season, cotton plants showing typical wilting symptoms, stem discoloration, and root rot (Fig. 1A and B) were observed in two cotton fields in Sumner County, Kansas. In order to confirm the causal agent, root tissues and lower parts of the stems were collected from 25 diseased cotton plants and cleaned as previously described by Larren et al, (2001). Small segments (1-2 cm) of roots and stems were incubated on potato dextrose agar (PDA) at room temperature. The isolates were purified with the single spore method and 23 of 25 isolates (92%) showed typical morphology of F. oxysporum, with a white-peach pigmentation as reported previously (Leslie and Summerell 2008). Two isolates, CK13B and CK18A, one from each of the two fields were selected, and genomic DNA was extracted with E.Z.N.A Fungal DNA Mini kit (Omega Bio-tek, Norcross, GA). Polymerase chain reaction (PCR) assays were performed as reported previously (Ortiz, et al. 2017) to amplify and sequence a portion of three nuclear genes: translation elongation factor (EF-1α), phosphate: H* symporter (PHO), and β-tubulin (BT). BLASTn analysis of CK13B sequences showed 93-98% identity with F. oxysporum f. sp. vasinfectum isolates originating from Australia, with 93.43% (1706/1826 pb) identity of EF-1α to isolate AuSeed14 (KT323873), 95.11% (1849/1944 bp) of PHO to isolate AuK24232 (KT323909), and 97.56% (1840/1886 bp) identity of BT to isolate AusSeed14 (KT323833). Sequences of CK13B for EF1-α, PHO, and BT genes were submitted to GenBank, accession no. of ON754247, ON754248, and ON754249, respectively. The CK18A isolate showed high identity with F. oxysporum f. sp. vasinfectum races 1, 2, and 6 lineage isolates (Ortiz et al., 2017), with 99.89% (1822/1824 bp) identity of the EF1-α gene to isolate CDR238 (KT323838) from Arkansas, 98.36% (1916/1948 bp) identity of the PHO gene to isolate CDR1131 (KT323887) from Louisiana and 98.78% (1864/1887 bp) identity of the BT gene to isolate ATCC36198 (KT323799) from Brazil. Sequences of the CK18A isolate were submitted to GenBank, accession no. ON651444, ON725043, and ON725044, respectively. Pathogenicity of both isolates was tested on G. hirsutum as previously described (Kim et al. 2005) with three replicates per isolate and a control treatment in a growth chamber. Briefly, cotton seedlings were maintained with 12 h light/dark cycle at 25-20 °C. At the first true leaf stage seedlings were uprooted, roots were cleaned by rinsing with sterile water then placed in a conidial suspension (1×106 conidia/ml) for 2 h while the healthy control seedlings were dipped in water only. Plants were put into sterile soil, and the results were observed and recorded every seven days for a period of 30 days. The inoculated plants showed the same symptoms as those observed in the fields, wilting, leaf chlorosis, and necrosis. Both isolates were re-isolated from the roots of the inoculated plants. DNA was extracted and used for PCR with the specific gene primers as listed above. The sequences matched those of the original isolates, completing the Koch's pustulates. To our knowledge, this is the first report of F. oxysporum f. sp. vasinfectum causing Fusarium wilt disease of cotton in Kansas. These results will help growers select cultivars and design disease control strategies accordingly (Davis, et al., 2006). Further work is needed to determine the specific races in the area.

摘要

枯萎病是棉花(棉属)最具毁灭性的病害之一。它由土壤传播的病原菌尖孢镰刀菌(Fusarium oxysporum Schlechtend.)引起,专化型为棉花枯萎病菌(F. oxysporum Schlechtend. f. sp. vasinfectum (Atk.) Snyd. & Hans)(阿特金森,1892年)。迄今为止,基于其不同的遗传学特性和对寄主的反应,全球已报道了8个棉花枯萎病菌专化型小种(钱切塔等人,2015年)。枯萎病症状在棉花生长的各个阶段都会出现。病菌通过根部侵入并定殖于维管束系统,导致植株变色和枯萎(戴维斯等人,2006年)。在2021年7月的生长季调查中,堪萨斯州萨姆纳县的两块棉田中观察到了表现出典型枯萎症状、茎部变色和根腐的棉花植株(图1A和B)。为了确定病原菌,从25株患病棉花植株上采集了根组织和茎的下部,并按照拉伦等人(2001年)先前描述的方法进行清洗。将根和茎的小段(1 - 2厘米)在室温下于马铃薯葡萄糖琼脂(PDA)上培养。采用单孢分离法对分离菌株进行纯化,25个分离菌株中有23个(92%)表现出典型的尖孢镰刀菌形态,具有如先前报道的白色 - 桃色色素沉着(莱斯利和萨默雷尔,2008年)。从两块棉田各选取了一个分离菌株,即CK13B和CK18A,并使用E.Z.N.A真菌DNA小提试剂盒(欧米茄生物科技公司,佐治亚州诺克罗斯)提取基因组DNA。按照先前报道的方法(奥尔蒂斯等人,2017年)进行聚合酶链反应(PCR)分析,以扩增和测序三个核基因的部分序列:翻译延伸因子(EF - 1α)、磷酸盐:H⁺同向转运体(PHO)和β - 微管蛋白(BT)。对CK13B序列的BLASTn分析表明,其与源自澳大利亚的棉花枯萎病菌分离菌株的同一性为93% - 98%,其中EF - 1α与分离菌株AuSeed14(KT323873)的同一性为93.43%(1706/1826 pb),PHO与分离菌株AuK24232(KT323909)的同一性为95.11%(1849/1944 bp),BT与分离菌株AusSeed14(KT323833)的同一性为97.56%(1840/1886 bp)。CK13B的EF1 - α、PHO和BT基因序列已提交至GenBank,登录号分别为ON754247、ON754248和ON754249。CK18A分离菌株与棉花枯萎病菌小种1、2和6谱系的分离菌株具有高度同一性(奥尔蒂斯等人,2017年),其中EF1 - α基因与来自阿肯色州的分离菌株CDR238(KT323838)的同一性为99.89%(1822/1824 bp),PHO基因与来自路易斯安那州的分离菌株CDR1131(KT323887)的同一性为98.36%(1916/1948 bp),BT基因与来自巴西的分离菌株ATCC36198(KT323799)的同一性为98.78%(1864/1887 bp)。CK18A分离菌株的序列已提交至GenBank,登录号分别为ON651444、ON725043和ON725044。按照先前描述的方法(金等人,2005年),在生长室中对这两个分离菌株的致病性进行了测试,每个分离菌株设置三个重复,并设一个对照处理。简要来说,棉花幼苗在25 - 20℃、12小时光照/黑暗周期条件下培养。在第一片真叶期,将幼苗连根拔起,用无菌水冲洗根部后,置于分生孢子悬浮液(1×10⁶分生孢子/毫升)中浸泡2小时,而健康对照幼苗仅浸入水中。将植株种植于无菌土壤中,每隔七天观察并记录结果,持续30天。接种植株表现出与田间观察到的相同症状,即枯萎、叶片黄化和坏死。两个分离菌株均从接种植株的根部重新分离得到。提取DNA并使用上述特异性基因引物进行PCR。序列与原始分离菌株匹配,完成了柯赫氏法则验证。据我们所知,这是棉花枯萎病菌引起堪萨斯州棉花枯萎病的首次报道。这些结果将有助于种植者选择品种并据此设计病害控制策略(戴维斯等人,2006年)。还需要进一步的工作来确定该地区的具体小种。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验