Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region.
Drug Discov Today. 2022 Nov;27(11):103351. doi: 10.1016/j.drudis.2022.103351. Epub 2022 Sep 9.
DNA-encoded libraries (DELs) allow starting chemical matter to be identified in drug discovery. The volume of experimental data generated also makes DELs an attractive resource for machine learning (ML). ML allows modeling complex relationships between compounds and numerical endpoints, such as the binding to a target measured by DELs. DELs could also empower other areas of drug discovery. Here, we propose that DELs and ML could be combined to model binding to off-targets, enabling better predictive toxicology. With enough data, ML models can make accurate predictions across a vast chemical space, and they can be reused and expanded across projects. Although there are limitations, more general toxicology models could be applied earlier during drug discovery, illuminating safety liabilities at a lower cost.
DNA 编码文库 (DEL) 可用于鉴定药物发现中的起始化学物质。产生的实验数据量也使 DEL 成为机器学习 (ML) 的有吸引力的资源。ML 允许对化合物和数值终点(例如通过 DEL 测量的与靶标结合)之间的复杂关系进行建模。DEL 还可以为药物发现的其他领域提供支持。在这里,我们提出 DEL 和 ML 可以结合起来对非靶标结合进行建模,从而实现更好的预测毒理学。有了足够的数据,ML 模型可以在广阔的化学空间中进行准确预测,并且可以在项目之间重复使用和扩展。尽管存在局限性,但更通用的毒理学模型可以在药物发现的早期阶段更早地应用,以更低的成本揭示安全隐患。