Suppr超能文献

比较多种物种的LD/LC机器学习模型

Comparing LD/LC Machine Learning Models for Multiple Species.

作者信息

Lane Thomas R, Harris Joshua, Urbina Fabio, Ekins Sean

机构信息

Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA.

出版信息

J Chem Health Saf. 2023 Mar 27;30(2):83-97. doi: 10.1021/acs.chas.2c00088. Epub 2023 Feb 23.

Abstract

The lethal dose or concentration which kills 50% of the animals (LD or LC) is an important parameter for scientists to understand the toxicity of chemicals in different scenarios that can be used to make go-no-go decisions, and ultimately assist in the choice of the right personal protective equipment needed for containment. The LD assessment process has also required the use of many animals although modern methods have reduced the number of rats needed. Since a compound is usually considered highly toxic when the LD is lower than 25 mg/kg, such a classification provides potentially valuable safety information to synthetic chemists and other safety assessment scientists. The need for finding alternative approaches such as computational methods is important to ultimately reduce animal use for this testing further still. We now summarize our efforts to use public data for building LD or LC classification and regression machine learning models for various species (rat, mouse, fish and daphnia) and their 5-fold cross validation statistics with different machine learning algorithms as well as an external curated test set for mouse LD. These datasets consist of different molecule classes, may cover different activity ranges, and also have a range of dataset sizes. The challenges of using such computational models are that their applicability domain will also need to be understood so that they can be used to make reliable predictions for novel molecules. These machine learning models will also need to be backed up with experimental validation. However, such models could also be used for efforts to bridge gaps in individual toxicity datasets. Making such models available also opens them up to potential misuse or dual use. We will summarize these efforts and propose that they could be used for scoring the millions of commercially available molecules, most of which likely do not have a known LD or for that matter any data or for toxicity.

摘要

杀死50%动物的致死剂量或浓度(LD或LC)是科学家了解化学品在不同场景下毒性的重要参数,可用于做出通过与否的决策,并最终有助于选择遏制所需的合适个人防护装备。LD评估过程过去也需要使用大量动物,尽管现代方法已减少了所需大鼠的数量。由于当LD低于25毫克/千克时,化合物通常被认为具有高毒性,这种分类为合成化学家及其他安全评估科学家提供了潜在有价值的安全信息。寻找诸如计算方法等替代方法对于进一步最终减少用于该测试的动物使用量很重要。我们现在总结我们利用公共数据构建针对各种物种(大鼠、小鼠、鱼类和水蚤)的LD或LC分类及回归机器学习模型的努力,以及它们使用不同机器学习算法的5倍交叉验证统计数据,还有针对小鼠LD的外部精选测试集。这些数据集由不同的分子类别组成,可能涵盖不同的活性范围,并且数据集大小也各不相同。使用此类计算模型的挑战在于还需要了解其适用范围,以便能够用于对新分子进行可靠预测。这些机器学习模型也需要通过实验验证来支持。然而,此类模型也可用于弥合个体毒性数据集之间的差距。提供此类模型也可能导致其被滥用或两用。我们将总结这些努力,并提出它们可用于对数百万种市售分子进行评分,其中大多数可能没有已知的LD,或者就此而言没有任何数据或毒性数据。

相似文献

1
Comparing LD/LC Machine Learning Models for Multiple Species.比较多种物种的LD/LC机器学习模型
J Chem Health Saf. 2023 Mar 27;30(2):83-97. doi: 10.1021/acs.chas.2c00088. Epub 2023 Feb 23.
4
CATMoS: Collaborative Acute Toxicity Modeling Suite.CATMoS:协作急性毒性建模套件。
Environ Health Perspect. 2021 Apr;129(4):47013. doi: 10.1289/EHP8495. Epub 2021 Apr 30.
6
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

6
Predicting the Hallucinogenic Potential of Molecules Using Artificial Intelligence.利用人工智能预测分子的致幻潜力。
ACS Chem Neurosci. 2024 Aug 21;15(16):3078-3089. doi: 10.1021/acschemneuro.4c00405. Epub 2024 Aug 2.
7
Near-Term Quantum Classification Algorithms Applied to Antimalarial Drug Discovery.应用于抗疟药物发现的近期量子分类算法
J Chem Inf Model. 2024 Aug 12;64(15):5922-5930. doi: 10.1021/acs.jcim.4c00953. Epub 2024 Jul 16.

本文引用的文献

1
A teachable moment for dual-use.两用的一个可教时刻。
Nat Mach Intell. 2022 Jul;4(7). doi: 10.1038/s42256-022-00511-6. Epub 2022 Jul 12.
2
Design and synthesis of TPP-Mitomycin C conjugate with reduced toxicity.设计并合成毒性降低的 TPP-丝裂霉素 C 缀合物。
Bioorg Med Chem Lett. 2022 Dec 1;77:129036. doi: 10.1016/j.bmcl.2022.129036. Epub 2022 Oct 21.
4
AI in drug discovery: A wake-up call.人工智能在药物研发中的应用:敲响警钟。
Drug Discov Today. 2023 Jan;28(1):103410. doi: 10.1016/j.drudis.2022.103410. Epub 2022 Oct 18.
6
Dual Use of Artificial Intelligence-powered Drug Discovery.人工智能驱动的药物发现的双重用途。
Nat Mach Intell. 2022 Mar;4(3):189-191. doi: 10.1038/s42256-022-00465-9. Epub 2022 Mar 7.
8
Combining DELs and machine learning for toxicology prediction.结合 DELs 和机器学习进行毒理学预测。
Drug Discov Today. 2022 Nov;27(11):103351. doi: 10.1016/j.drudis.2022.103351. Epub 2022 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验