Smalinskaitė Luka, Hegde Ramanujan S
MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
Cold Spring Harb Perspect Biol. 2023 Apr 3;15(4):a041251. doi: 10.1101/cshperspect.a041251.
Multipass membrane proteins contain two or more α-helical transmembrane domains (TMDs) that span the lipid bilayer. They are inserted cotranslationally into the prokaryotic plasma membrane or eukaryotic endoplasmic reticulum membrane. The Sec61 complex (SecY complex in prokaryotes) provides a ribosome docking site, houses a channel across the membrane, and contains a lateral gate that opens toward the lipid bilayer. Model multipass proteins can be stitched into the membrane by iteratively using Sec61's lateral gate for TMD insertion and its central pore for translocation of flanking domains. Native multipass proteins, with their diverse TMDs and complex topologies, often also rely on members of the Oxa1 family of translocation factors, the PAT complex chaperone, and other poorly understood factors. Here, we discuss the mechanisms of TMD insertion, highlight the limitations of an iterative insertion model, and propose a new hypothesis for multipass membrane protein biogenesis based on recent findings.
多次跨膜蛋白含有两个或更多跨越脂质双层的α-螺旋跨膜结构域(TMDs)。它们在翻译过程中被共翻译插入到原核生物的质膜或真核生物的内质网膜中。Sec61复合物(原核生物中的SecY复合物)提供核糖体停靠位点,容纳一个跨膜通道,并包含一个朝向脂质双层开放的侧向门。通过反复使用Sec61的侧向门进行TMD插入及其中心孔进行侧翼结构域的转运,可以将模型多次跨膜蛋白拼接插入膜中。天然的多次跨膜蛋白具有多样的TMD和复杂的拓扑结构,它们通常还依赖于转运因子Oxa1家族的成员、PAT复合物伴侣蛋白以及其他了解较少的因子。在这里,我们讨论TMD插入的机制,强调迭代插入模型的局限性,并基于最近的发现提出一个关于多次跨膜蛋白生物合成的新假说。