Suppr超能文献

核心真核蛋白复合物的计算结构。

Computed structures of core eukaryotic protein complexes.

机构信息

Department of Biochemistry, University of Washington, Seattle, WA, USA.

Institute for Protein Design, University of Washington, Seattle, WA, USA.

出版信息

Science. 2021 Dec 10;374(6573):eabm4805. doi: 10.1126/science.abm4805.

Abstract

Protein-protein interactions play critical roles in biology, but the structures of many eukaryotic protein complexes are unknown, and there are likely many interactions not yet identified. We take advantage of advances in proteome-wide amino acid coevolution analysis and deep-learning–based structure modeling to systematically identify and build accurate models of core eukaryotic protein complexes within the proteome. We use a combination of RoseTTAFold and AlphaFold to screen through paired multiple sequence alignments for 8.3 million pairs of yeast proteins, identify 1505 likely to interact, and build structure models for 106 previously unidentified assemblies and 806 that have not been structurally characterized. These complexes, which have as many as five subunits, play roles in almost all key processes in eukaryotic cells and provide broad insights into biological function.

摘要

蛋白质-蛋白质相互作用在生物学中起着至关重要的作用,但许多真核生物蛋白质复合物的结构尚不清楚,可能还有许多尚未被发现的相互作用。我们利用在全蛋白质组范围内氨基酸共进化分析和基于深度学习的结构建模方面的进展,系统地识别和构建蛋白质组内核心真核生物蛋白质复合物的精确模型。我们结合使用了 RoseTTAFold 和 AlphaFold,通过对 830 万对酵母蛋白的成对多重序列比对进行筛选,鉴定出 1505 对可能相互作用的蛋白质,并为 106 个先前未被识别的组装体和 806 个尚未进行结构特征分析的组装体构建了结构模型。这些复合物有多达五个亚基,参与真核细胞中几乎所有关键过程,并为深入了解生物学功能提供了广泛的见解。

相似文献

1
Computed structures of core eukaryotic protein complexes.
Science. 2021 Dec 10;374(6573):eabm4805. doi: 10.1126/science.abm4805.
2
Global landscape of protein complexes in the yeast Saccharomyces cerevisiae.
Nature. 2006 Mar 30;440(7084):637-43. doi: 10.1038/nature04670. Epub 2006 Mar 22.
3
Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae.
Nature. 2012 Sep 27;489(7417):585-9. doi: 10.1038/nature11354. Epub 2012 Sep 2.
4
Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding.
J Mol Biol. 2008 Feb 1;375(5):1416-33. doi: 10.1016/j.jmb.2007.11.063. Epub 2007 Nov 28.
5
Proteome survey reveals modularity of the yeast cell machinery.
Nature. 2006 Mar 30;440(7084):631-6. doi: 10.1038/nature04532. Epub 2006 Jan 22.
6
Subunit architecture of multimeric complexes isolated directly from cells.
EMBO Rep. 2006 Jun;7(6):605-10. doi: 10.1038/sj.embor.7400702. Epub 2006 May 19.
7
Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling.
Nature. 2018 Sep;561(7722):268-272. doi: 10.1038/s41586-018-0462-y. Epub 2018 Aug 29.
8
The social and structural architecture of the yeast protein interactome.
Nature. 2023 Dec;624(7990):192-200. doi: 10.1038/s41586-023-06739-5. Epub 2023 Nov 15.
9
Analysis of Three-Dimensional Structures of Exocyst Components.
Methods Mol Biol. 2016;1369:191-204. doi: 10.1007/978-1-4939-3145-3_14.
10
Structural insights into Saccharomyces cerevisiae Msh4-Msh5 complex function using homology modeling.
PLoS One. 2013 Nov 14;8(11):e78753. doi: 10.1371/journal.pone.0078753. eCollection 2013.

引用本文的文献

2
PEX39 facilitates the peroxisomal import of PTS2-containing proteins.
Nat Cell Biol. 2025 Jul 30. doi: 10.1038/s41556-025-01711-z.
3
Inhibition of FAM19A5 reverses synaptic loss and cognitive decline in mouse models of Alzheimer's disease.
Alzheimers Res Ther. 2025 Jul 21;17(1):168. doi: 10.1186/s13195-025-01813-8.
4
A Complementarity-Based Approach to De Novo Binder Design.
Adv Sci (Weinh). 2025 Sep;12(33):e02015. doi: 10.1002/advs.202502015. Epub 2025 Jul 21.
5
Molecular machineries and pathways of mitochondrial protein transport.
Nat Rev Mol Cell Biol. 2025 Jul 3. doi: 10.1038/s41580-025-00865-w.
6
Heterodimerization of staphylococcal phage φ2638A endolysin isoforms and their functional role in bacterial lysis.
Microlife. 2025 Jun 10;6:uqaf011. doi: 10.1093/femsml/uqaf011. eCollection 2025.
7
CASP16 protein monomer structure prediction assessment.
bioRxiv. 2025 Jun 2:2025.05.29.656942. doi: 10.1101/2025.05.29.656942.
10
Cyclic peptide structure prediction and design using AlphaFold2.
Nat Commun. 2025 May 21;16(1):4730. doi: 10.1038/s41467-025-59940-7.

本文引用的文献

1
Molecular basis for substrate recruitment to the PRMT5 methylosome.
Mol Cell. 2021 Sep 2;81(17):3481-3495.e7. doi: 10.1016/j.molcel.2021.07.019. Epub 2021 Aug 5.
2
SMC complexes are guarded by the SUMO protease Ulp2 against SUMO-chain-mediated turnover.
Cell Rep. 2021 Aug 3;36(5):109485. doi: 10.1016/j.celrep.2021.109485.
3
Accurate prediction of protein structures and interactions using a three-track neural network.
Science. 2021 Aug 20;373(6557):871-876. doi: 10.1126/science.abj8754. Epub 2021 Jul 15.
4
Translational control of stem cell function.
Nat Rev Mol Cell Biol. 2021 Oct;22(10):671-690. doi: 10.1038/s41580-021-00386-2. Epub 2021 Jul 16.
5
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
6
Cryo-EM structure of TFIIH/Rad4-Rad23-Rad33 in damaged DNA opening in nucleotide excision repair.
Nat Commun. 2021 Jun 7;12(1):3338. doi: 10.1038/s41467-021-23684-x.
7
DOE JGI Metagenome Workflow.
mSystems. 2021 May 18;6(3):e00804-20. doi: 10.1128/mSystems.00804-20.
8
Smc5/6 functions with Sgs1-Top3-Rmi1 to complete chromosome replication at natural pause sites.
Nat Commun. 2021 Apr 8;12(1):2111. doi: 10.1038/s41467-021-22217-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验