Benchafia El Mostafa, Wang Xianqin, Iqbal Zafar, Abedrabbo Sufian
Department of Physics, Khalifa University, Abu Dhabi, UAE.
Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA.
Sci Rep. 2022 Sep 12;12(1):15312. doi: 10.1038/s41598-022-19080-0.
Postulated in 1992 and synthesized in 2004 above 2000 K and 110 GPa, the singly-bonded nitrogen cubic gauche crystal (cg-PN) is still considered to be the ultimate high energy density material (HEDM). The search however has continued for a method to synthesize cg-PN at more ambient conditions or find HEDMs which can be synthesized at lower pressure and temperature. Here, using ab initio evolutionary crystal prediction techniques, a simpler nitrogen-based molecular crystal consisting of N[Formula: see text] and N[Formula: see text] molecules is revealed to be a more favorable polynitrogen at lower pressures. The energetic gain of 534 meV/atom over cg-PN and 138 meV/atom over the N[Formula: see text] molecular crystal at zero pressure makes the N[Formula: see text]-N[Formula: see text] system more appealing. Dynamical and mechanical stabilities are investigated at 5 and 0 GPa, and vibrational frequencies are assessed for its Raman and IR spectra. The prospects of an experimental synthesis of the N[Formula: see text]-N[Formula: see text] polymeric system compared to cg-PN is higher because the C[Formula: see text] symmetry of N[Formula: see text] within this crystal would be easier to target from the readily available N[Formula: see text] azides and the observed N[Formula: see text] and N[Formula: see text] radicals.
单键氮立方左旋晶体(cg-PN)于1992年被提出,并于2004年在2000 K以上和110 GPa的条件下合成,它至今仍被认为是终极的高能量密度材料(HEDM)。然而,人们一直在寻找一种在更温和的条件下合成cg-PN的方法,或者找到可以在更低压力和温度下合成的高能量密度材料。在这里,使用从头算进化晶体预测技术,一种由N[化学式:见正文]和N[化学式:见正文]分子组成的更简单的氮基分子晶体被发现是在较低压力下更有利的多氮物质。在零压力下,相对于cg-PN,该晶体每原子有534 meV的能量增益,相对于N[化学式:见正文]分子晶体每原子有138 meV的能量增益,这使得N[化学式:见正文]-N[化学式:见正文]体系更具吸引力。研究了该体系在5 GPa和0 GPa下的动力学和力学稳定性,并评估了其拉曼光谱和红外光谱的振动频率。与cg-PN相比,N[化学式:见正文]-N[化学式:见正文]聚合物体系的实验合成前景更高,因为该晶体内N[化学式:见正文]的C[化学式:见正文]对称性更容易从现成的N[化学式:见正文]叠氮化物以及观察到的N[化学式:见正文]和N[化学式:见正文]自由基中实现。