Wang Yuan, Wu Yueyue, Guo Xinyi, Wang Baojun, Fan Maohong, Zhang Riguang
College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China.
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China.
ACS Appl Mater Interfaces. 2022 Sep 21;14(37):41896-41911. doi: 10.1021/acsami.2c08539. Epub 2022 Sep 12.
Heteroatoms doped into the subsurface of transition metals play a vital role in heterogeneous catalysis via either expressing surface structures or even directly participating in the reaction. Herein, DFT calculations and microkinetic modeling are implemented to examine CH selective hydrogenation over heteroatom (H, B, C, N, or P)-doped Cu(111) and Cu(211) subsurfaces, which are compared with pure Cu(111) and Cu(211) to unravel the role of subsurface chemistry in tuning the surface structure and further regulating catalytic performance. Our results indicate that the catalytic performance toward CH selective hydrogenation is closely related to the type of doped subsurface heteroatom and the Cu surface coordination environment, which can be attributed to the simultaneous change of Cu surface geometric and electronic structures. Catalytic performance improvement over the heteroatom-doped Cu(111) is generally better than that over the doped Cu(211); especially, B- or N-doped Cu(111) has excellent CH activity and selectivity and greatly inhibits green oil. For the heteroatom-doped Cu(211), better performance is only obtained on P-Cu(211), which is still lower than the B- and N-doped Cu(111). The subsurface heteroatom doping should focus on high-coordination Cu(111) instead of low-coordination Cu(211). AIMD simulations verified the thermal stability of B-Cu(111) and N-Cu(111); both were screened out to be the most suitable catalysts toward CH hydrogenation. This work clearly unravels the role of subsurface chemistry in heterogeneous catalysis and contributes to the rational design of high-performance metal catalysts by tuning surface structures with the heteroatom into the subsurface.
掺杂到过渡金属次表面的杂原子在多相催化中起着至关重要的作用,其作用方式要么是表达表面结构,要么甚至直接参与反应。在此,通过密度泛函理论(DFT)计算和微观动力学建模来研究在杂原子(H、B、C、N或P)掺杂的Cu(111)和Cu(211)次表面上的CH选择性加氢反应,并将其与纯Cu(111)和Cu(211)进行比较,以阐明次表面化学在调节表面结构以及进一步调控催化性能方面的作用。我们的结果表明,对CH选择性加氢的催化性能与掺杂的次表面杂原子类型以及Cu表面配位环境密切相关,这可归因于Cu表面几何结构和电子结构的同时变化。杂原子掺杂的Cu(111)上的催化性能提升通常优于掺杂的Cu(211);特别是,B或N掺杂的Cu(111)具有优异的CH活性和选择性,并能极大地抑制绿油生成。对于杂原子掺杂的Cu(211),仅在P-Cu(211)上获得了较好的性能,但其仍低于B和N掺杂的Cu(111)。次表面杂原子掺杂应聚焦于高配位的Cu(111)而非低配位的Cu(211)。从头算分子动力学(AIMD)模拟验证了B-Cu(111)和N-Cu(111)的热稳定性;二者均被筛选为最适合CH加氢反应的催化剂。这项工作清楚地阐明了次表面化学在多相催化中的作用,并通过将杂原子引入次表面来调节表面结构,为高性能金属催化剂的合理设计做出了贡献。