Suppr超能文献

雪崩中从亚瑞利反裂纹到超剪切裂纹扩展的转变。

Transition from sub-Rayleigh anticrack to supershear crack propagation in snow avalanches.

作者信息

Trottet Bertil, Simenhois Ron, Bobillier Gregoire, Bergfeld Bastian, van Herwijnen Alec, Jiang Chenfanfu, Gaume Johan

机构信息

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Colorado Avalanche Information Center, Boulder, CO USA.

出版信息

Nat Phys. 2022;18(9):1094-1098. doi: 10.1038/s41567-022-01662-4. Epub 2022 Jul 25.

Abstract

Snow slab avalanches, characterized by a distinct, broad fracture line, are released following anticrack propagation in highly porous weak snow layers buried below cohesive slabs. The anticrack mechanism is driven by the volumetric collapse of the weak layer, which leads to the closure of crack faces and to the onset of frictional contact. Here, on the basis of snow fracture experiments, full-scale avalanche measurements and numerical simulations, we report the existence of a transition from sub-Rayleigh anticrack to supershear crack propagation. This transition follows the Burridge-Andrews mechanism, in which a supershear daughter crack nucleates ahead of the main fracture front and eventually propagates faster than the shear wave speed. Furthermore, we show that the supershear propagation regime can exist even if the shear-to-normal stress ratio is lower than the static friction coefficient as a result of the loss of frictional resistance during collapse. This finding shows that snow slab avalanches have fundamental similarities with strike-slip earthquakes.

摘要

雪板雪崩的特征是有一条明显、宽阔的裂缝线,它是在埋于粘性雪板下方的高度多孔弱雪层中反裂纹扩展后发生的。反裂纹机制是由弱层的体积坍塌驱动的,这会导致裂纹面闭合并引发摩擦接触。在此,基于雪断裂实验、全尺寸雪崩测量和数值模拟,我们报告了从亚瑞利反裂纹到超剪切裂纹扩展的转变的存在。这种转变遵循伯里奇 - 安德鲁斯机制,即超剪切子裂纹在主断裂前沿之前成核,并最终以高于剪切波速度的速度传播。此外,我们表明,由于坍塌过程中摩擦阻力的丧失,即使剪应力与正应力之比低于静摩擦系数,超剪切传播状态也可能存在。这一发现表明雪板雪崩与走滑地震有基本的相似之处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0754/9458539/e28def942c0c/41567_2022_1662_Fig1_HTML.jpg

相似文献

1
Transition from sub-Rayleigh anticrack to supershear crack propagation in snow avalanches.
Nat Phys. 2022;18(9):1094-1098. doi: 10.1038/s41567-022-01662-4. Epub 2022 Jul 25.
2
Numerical investigation of crack propagation regimes in snow fracture experiments.
Granul Matter. 2024;26(3):58. doi: 10.1007/s10035-024-01423-5. Epub 2024 Apr 22.
3
Anticrack nucleation as triggering mechanism for snow slab avalanches.
Science. 2008 Jul 11;321(5886):240-3. doi: 10.1126/science.1153948.
4
Micro-mechanical insights into the dynamics of crack propagation in snow fracture experiments.
Sci Rep. 2021 Jun 3;11(1):11711. doi: 10.1038/s41598-021-90910-3.
5
The equation of motion for supershear frictional rupture fronts.
Sci Adv. 2018 Jul 18;4(7):eaat5622. doi: 10.1126/sciadv.aat5622. eCollection 2018 Jul.
6
Dynamic anticrack propagation in snow.
Nat Commun. 2018 Aug 3;9(1):3047. doi: 10.1038/s41467-018-05181-w.
7
Fracture mechanics of snow avalanches.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jul;64(1 Pt 1):011305. doi: 10.1103/PhysRevE.64.011305. Epub 2001 Jun 22.
8
The role of pore fluids in supershear earthquake ruptures.
Sci Rep. 2023 Jan 9;13(1):398. doi: 10.1038/s41598-022-27159-x.
9
Transonic and Supershear Crack Propagation Driven by Geometric Nonlinearities.
Phys Rev Lett. 2024 May 31;132(22):226102. doi: 10.1103/PhysRevLett.132.226102.
10
From sub-Rayleigh to supershear ruptures during stick-slip experiments on crustal rocks.
Science. 2013 Jun 7;340(6137):1208-11. doi: 10.1126/science.1235637.

引用本文的文献

1
Fracture toughness of mixed-mode anticracks in highly porous materials.
Nat Commun. 2024 Sep 2;15(1):7379. doi: 10.1038/s41467-024-51491-7.
2
Numerical investigation of crack propagation regimes in snow fracture experiments.
Granul Matter. 2024;26(3):58. doi: 10.1007/s10035-024-01423-5. Epub 2024 Apr 22.
3
Dynamic imaging of force chains in 3D granular media.
Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2319160121. doi: 10.1073/pnas.2319160121. Epub 2024 Mar 25.

本文引用的文献

1
Dynamic anticrack propagation in snow.
Nat Commun. 2018 Aug 3;9(1):3047. doi: 10.1038/s41467-018-05181-w.
2
The equation of motion for supershear frictional rupture fronts.
Sci Adv. 2018 Jul 18;4(7):eaat5622. doi: 10.1126/sciadv.aat5622. eCollection 2018 Jul.
4
From sub-Rayleigh to supershear ruptures during stick-slip experiments on crustal rocks.
Science. 2013 Jun 7;340(6137):1208-11. doi: 10.1126/science.1235637.
5
The dynamics of the onset of frictional slip.
Science. 2010 Oct 8;330(6001):211-4. doi: 10.1126/science.1194777.
6
Anticrack nucleation as triggering mechanism for snow slab avalanches.
Science. 2008 Jul 11;321(5886):240-3. doi: 10.1126/science.1153948.
7
Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition.
Science. 2004 Mar 19;303(5665):1859-61. doi: 10.1126/science.1094022.
8
Cracks faster than the shear wave speed.
Science. 1999 May 21;284(5418):1337-40. doi: 10.1126/science.284.5418.1337.
9
Local crack branching as a mechanism for instability in dynamic fracture.
Phys Rev Lett. 1995 Jun 19;74(25):5096-5099. doi: 10.1103/PhysRevLett.74.5096.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验