Suppr超能文献

生成对抗网络在医学图像跨模态重建中的应用及展望。

Application and prospect for generative adversarial networks in cross-modality reconstruction of medical images.

机构信息

Institute of Biomedical Engineering, School of Communication and Information Engineering, Shanghai University, Shanghai 200444.

PET Center, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China. zuochuantao@ fudan.edu.cn.

出版信息

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2022 Aug 28;47(8):1001-1008. doi: 10.11817/j.issn.1672-7347.2022.220189.

Abstract

Cross-modality reconstruction of medical images refers to predicting the image from one modality to another so as to achieve more accurate personalized medicine. Generative adversarial networks is the most commonly used deep learning technique in cross-modality reconstruction. It can generate realistic images by learning features from implicit distributions that follow the distributions of real data and then reconstruct the image of another modality rapidly. With the sharp increase in clinical demand for multi-modality medical image, this technology has been widely used in the task of cross modal reconstruction between different medical image modalities, such as magnetic resonance imaging, computed tomography and positron emission computed tomography. It can achieve accurate and efficient cross-modality image reconstruction in different parts of the body, such as the brain, heart, etc. In addition, although GAN has achieved some success in cross-modality reconstruction, its stability, generalization ability, and accuracy still need further research and improvement.

摘要

医学图像跨模态重建是指从一种模态预测另一种模态的图像,从而实现更准确的个性化医疗。生成对抗网络是跨模态重建中最常用的深度学习技术。它可以通过从隐含分布中学习特征来生成逼真的图像,这些隐含分布遵循真实数据的分布,然后快速重建另一种模态的图像。随着临床对多模态医学图像需求的急剧增加,这项技术已广泛应用于不同医学图像模态之间的跨模态重建任务,如磁共振成像、计算机断层扫描和正电子发射断层扫描。它可以在身体的不同部位(如大脑、心脏等)实现精确高效的跨模态图像重建。此外,尽管 GAN 在跨模态重建中取得了一些成功,但它的稳定性、泛化能力和准确性仍需要进一步的研究和改进。

相似文献

1
Application and prospect for generative adversarial networks in cross-modality reconstruction of medical images.
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2022 Aug 28;47(8):1001-1008. doi: 10.11817/j.issn.1672-7347.2022.220189.
4
DualMMP-GAN: Dual-scale multi-modality perceptual generative adversarial network for medical image segmentation.
Comput Biol Med. 2022 May;144:105387. doi: 10.1016/j.compbiomed.2022.105387. Epub 2022 Mar 12.
5
Ea-GANs: Edge-Aware Generative Adversarial Networks for Cross-Modality MR Image Synthesis.
IEEE Trans Med Imaging. 2019 Jul;38(7):1750-1762. doi: 10.1109/TMI.2019.2895894. Epub 2019 Jan 29.
7
8
Deep learning for whole-body medical image generation.
Eur J Nucl Med Mol Imaging. 2021 Nov;48(12):3817-3826. doi: 10.1007/s00259-021-05413-0. Epub 2021 May 22.
9
3D multi-modality Transformer-GAN for high-quality PET reconstruction.
Med Image Anal. 2024 Jan;91:102983. doi: 10.1016/j.media.2023.102983. Epub 2023 Oct 4.
10
Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets.
Med Phys. 2019 Oct;46(10):4392-4404. doi: 10.1002/mp.13695. Epub 2019 Aug 20.

引用本文的文献

1
Clinicopathological characteristics of secondary trigeminal neuralgia due to cerebellopontine angle tumors.
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2024 Apr 28;49(4):588-594. doi: 10.11817/j.issn.1672-7347.2024.230369.

本文引用的文献

1
Paired-unpaired Unsupervised Attention Guided GAN with transfer learning for bidirectional brain MR-CT synthesis.
Comput Biol Med. 2021 Sep;136:104763. doi: 10.1016/j.compbiomed.2021.104763. Epub 2021 Aug 18.
2
Bidirectional Mapping Generative Adversarial Networks for Brain MR to PET Synthesis.
IEEE Trans Med Imaging. 2022 Jan;41(1):145-157. doi: 10.1109/TMI.2021.3107013. Epub 2021 Dec 30.
3
Synthesizing Missing PET from MRI with Cycle-consistent Generative Adversarial Networks for Alzheimer's Disease Diagnosis.
Med Image Comput Comput Assist Interv. 2018;11072:455-463. doi: 10.1007/978-3-030-00931-1_52. Epub 2018 Sep 13.
4
Unsupervised MR-to-CT Synthesis Using Structure-Constrained CycleGAN.
IEEE Trans Med Imaging. 2020 Dec;39(12):4249-4261. doi: 10.1109/TMI.2020.3015379. Epub 2020 Nov 30.
5
Medical Image Synthesis via Deep Learning.
Adv Exp Med Biol. 2020;1213:23-44. doi: 10.1007/978-3-030-33128-3_2.
7
Objective subtle cognitive difficulties predict future amyloid accumulation and neurodegeneration.
Neurology. 2020 Jan 28;94(4):e397-e406. doi: 10.1212/WNL.0000000000008838. Epub 2019 Dec 30.
8
MedGAN: Medical image translation using GANs.
Comput Med Imaging Graph. 2020 Jan;79:101684. doi: 10.1016/j.compmedimag.2019.101684. Epub 2019 Nov 22.
9
Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging.
Phys Med Biol. 2019 Nov 4;64(21):215016. doi: 10.1088/1361-6560/ab4eb7.
10
Generative adversarial network in medical imaging: A review.
Med Image Anal. 2019 Dec;58:101552. doi: 10.1016/j.media.2019.101552. Epub 2019 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验