School of Computing and Information Technology, University of Wollongong, Wollongong, NSW, Australia.
School of Computer Science, Sichuan University, Chengdu, China.
Adv Exp Med Biol. 2020;1213:23-44. doi: 10.1007/978-3-030-33128-3_2.
Medical images have been widely used in clinics, providing visual representations of under-skin tissues in human body. By applying different imaging protocols, diverse modalities of medical images with unique characteristics of visualization can be produced. Considering the cost of scanning high-quality single modality images or homogeneous multiple modalities of images, medical image synthesis methods have been extensively explored for clinical applications. Among them, deep learning approaches, especially convolutional neural networks (CNNs) and generative adversarial networks (GANs), have rapidly become dominating for medical image synthesis in recent years. In this chapter, based on a general review of the medical image synthesis methods, we will focus on introducing typical CNNs and GANs models for medical image synthesis. Especially, we will elaborate our recent work about low-dose to high-dose PET image synthesis, and cross-modality MR image synthesis, using these models.
医学图像在临床上得到了广泛应用,为人体皮下组织提供了可视化的表示。通过应用不同的成像协议,可以生成具有独特可视化特征的多种医学图像模式。考虑到扫描高质量单模态图像或同质多模态图像的成本,医学图像合成方法已被广泛探索用于临床应用。其中,深度学习方法,特别是卷积神经网络(CNN)和生成对抗网络(GAN),近年来已迅速成为医学图像合成的主流方法。在本章中,我们将在对医学图像合成方法进行综述的基础上,重点介绍用于医学图像合成的典型 CNN 和 GAN 模型。特别是,我们将详细介绍我们最近使用这些模型进行低剂量到高剂量 PET 图像合成和跨模态 MR 图像合成的工作。