Suppr超能文献

基于磁共振时域自旋断层成像的合成磁共振成像(MR-STAT):一项前瞻性横断面临床试验的结果

Synthetic MRI with Magnetic Resonance Spin TomogrAphy in Time-Domain (MR-STAT): Results from a Prospective Cross-Sectional Clinical Trial.

作者信息

Kleinloog Jordi P D, Mandija Stefano, D'Agata Federico, Liu Hongyan, van der Heide Oscar, Koktas Beyza, Dankbaar Jan Willem, Keil Vera C, Vonken Evert-Jan, Jacobs Sarah M, van den Berg Cornelis A T, Hendrikse Jeroen, van der Kolk Anja G, Sbrizzi Alessandro

机构信息

Computational Imaging Group for MR Therapy and Diagnostics, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands.

Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands.

出版信息

J Magn Reson Imaging. 2023 May;57(5):1451-1461. doi: 10.1002/jmri.28425. Epub 2022 Sep 13.

Abstract

BACKGROUND

Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT) can reconstruct whole-brain multi-parametric quantitative maps (eg, T , T ) from a 5-minute MR acquisition. These quantitative maps can be leveraged for synthetization of clinical image contrasts.

PURPOSE

The objective was to assess image quality and overall diagnostic accuracy of synthetic MR-STAT contrasts compared to conventional contrast-weighted images.

STUDY TYPE

Prospective cross-sectional clinical trial.

POPULATION

Fifty participants with a median age of 45 years (range: 21-79 years) consisting of 10 healthy participants and 40 patients with neurological diseases (brain tumor, epilepsy, multiple sclerosis or stroke).

FIELD STRENGTH/SEQUENCE: 3T/Conventional contrast-weighted imaging (T /T weighted, proton density [PD] weighted, and fluid-attenuated inversion recovery [FLAIR]) and a MR-STAT acquisition (2D Cartesian spoiled gradient echo with varying flip angle preceded by a non-selective inversion pulse).

ASSESSMENT

Quantitative T , T , and PD maps were computed from the MR-STAT acquisition, from which synthetic contrasts were generated. Three neuroradiologists blinded for image type and disease randomly and independently evaluated synthetic and conventional datasets for image quality and diagnostic accuracy, which was assessed by comparison with the clinically confirmed diagnosis.

STATISTICAL TESTS

Image quality and consequent acceptability for diagnostic use was assessed with a McNemar's test (one-sided α = 0.025). Wilcoxon signed rank test with a one-sided α = 0.025 and a margin of Δ = 0.5 on the 5-level Likert scale was used to assess non-inferiority.

RESULTS

All data sets were similar in acceptability for diagnostic use (≥3 Likert-scale) between techniques (T w:P = 0.105, PDw:P = 1.000, FLAIR:P = 0.564). However, only the synthetic MR-STAT T weighted images were significantly non-inferior to their conventional counterpart; all other synthetic datasets were inferior (T w:P = 0.260, PDw:P = 1.000, FLAIR:P = 1.000). Moreover, true positive/negative rates were similar between techniques (conventional: 88%, MR-STAT: 84%).

DATA CONCLUSION

MR-STAT is a quantitative technique that may provide radiologists with clinically useful synthetic contrast images within substantially reduced scan time.

EVIDENCE LEVEL

1 Technical Efficacy: Stage 2.

摘要

背景

时域磁共振自旋断层扫描(MR-STAT)能够通过5分钟的磁共振采集重建全脑多参数定量图谱(如T1、T2)。这些定量图谱可用于合成临床图像对比度。

目的

目的是评估合成MR-STAT对比度与传统对比度加权图像相比的图像质量和总体诊断准确性。

研究类型

前瞻性横断面临床试验。

研究对象

50名参与者,中位年龄45岁(范围:21-79岁),包括10名健康参与者和40名患有神经疾病(脑肿瘤、癫痫、多发性硬化症或中风)的患者。

场强/序列:3T/传统对比度加权成像(T1/T2加权、质子密度[PD]加权和液体衰减反转恢复[FLAIR])以及一次MR-STAT采集(二维笛卡尔扰相梯度回波,具有不同的翻转角,之前有一个非选择性反转脉冲)。

评估

从MR-STAT采集中计算出定量T1、T2和PD图谱,并从中生成合成对比度。三名对图像类型和疾病不知情的神经放射科医生随机且独立地评估合成数据集和传统数据集的图像质量和诊断准确性,通过与临床确诊诊断进行比较来评估。

统计检验

使用McNemar检验(单侧α = 0.025)评估图像质量以及诊断用途的可接受性。使用单侧α = 0.025且在5级李克特量表上差值Δ = 0.5的Wilcoxon符号秩检验来评估非劣效性。

结果

在技术之间,所有数据集在诊断用途的可接受性方面(≥3李克特量表)相似(T1加权:P = 0.105,PD加权:P = 1.000,FLAIR:P = 0.564)。然而,只有合成的MR-STAT T1加权图像明显不劣于其传统对应图像;所有其他合成数据集均较差(T2加权:P = 0.26零,PD加权:P = 1.000,FLAIR:P = 1.000)。此外,技术之间的真阳性/阴性率相似(传统:88%,MR-STAT:84%)。

数据结论

MR-STAT是一种定量技术,可在大幅缩短的扫描时间内为放射科医生提供临床上有用的合成对比度图像。

证据水平

1 技术效能:2期。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验