Suppr超能文献

新型菌根特异 P 型转运蛋白 PvPht1;6 有助于砷超积累植物砷在共生界面的积累。

Novel Mycorrhiza-Specific P Transporter PvPht1;6 Contributes to As Accumulation at the Symbiotic Interface of As-Hyperaccumulator .

机构信息

Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.

College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.

出版信息

Environ Sci Technol. 2022 Oct 4;56(19):14178-14187. doi: 10.1021/acs.est.2c04367. Epub 2022 Sep 13.

Abstract

Arsenic (As) is toxic and ubiquitous in the environment, posing a growing threat to human health. As-hyperaccumulator has been used for phytoremediation of As-contaminated soil. Symbiosis with arbuscular mycorrhizal fungi (AMF) enhances As accumulation by , which is different from As inhibition in typical plants. In this study, seedlings inoculated with or without AMF were cultivated in As-contaminated soils for 2 months. AMF-root symbiosis enhanced plant growth, with 64.5% greater As contents in the fronds. After exposure to AsV for 2 h, the arsenate (AsV) and arsenite (AsIII) contents in AMF-roots increased by 1.8- and 3.6-fold, suggesting more efficient As uptake by with AMF-roots. Plants take up and transport AsV via phosphate transporters (Phts). Here, for the first time, we identified a novel mycorrhiza-specific Pht transporter, PvPht1;6, from . The transcripts of were strongly induced in AMF-roots, which were localized to the plasma membrane of arbuscule-containing cells. By complementing a yeast mutant lacking 5-Phts, we confirmed PvPht1;6's transport activity for both P and AsV. In contrast to typical AMF-inducible phosphate transporter LePT4 from tomato, PvPht1;6 showed greater AsV transport capacity. The results suggest that PvPht1;6 is probably critical for AsV transport at the periarbuscular membrane of root cells, revealing the underlying mechanism of efficient As accumulation in with AMF-roots.

摘要

砷(As)在环境中具有毒性和普遍性,对人类健康构成了日益严重的威胁。砷超积累植物已被用于修复砷污染土壤。与丛枝菌根真菌(AMF)共生会增强砷的积累,这与典型植物中的砷抑制作用不同。在这项研究中,将接种或不接种 AMF 的 幼苗在砷污染的土壤中培养 2 个月。AMF-根共生促进了植物的生长,叶片中的砷含量增加了 64.5%。暴露于砷 V(AsV) 2 小时后,AMF-根中的砷酸盐(AsV)和亚砷酸盐(AsIII)含量分别增加了 1.8 倍和 3.6 倍,表明 AMF-根中 对砷的吸收效率更高。植物通过磷酸盐转运蛋白(Phts)摄取和转运 AsV。在这里,我们首次从 中鉴定出一种新型的菌根特异 Pht 转运蛋白 PvPht1;6。 的转录物在 AMF-根中强烈诱导,定位于含有丛枝的细胞的质膜上。通过互补缺乏 5-Phts 的酵母突变体,我们证实了 PvPht1;6 对 P 和 AsV 的转运活性。与番茄中典型的 AMF 诱导型磷酸盐转运蛋白 LePT4 不同,PvPht1;6 对 AsV 的转运能力更强。结果表明,PvPht1;6 可能对 根细胞周丛膜上的 AsV 转运至关重要,揭示了 AMF-根中 高效积累砷的潜在机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验