Suppr超能文献

物质使用治疗结果神经预测中的外部有效性威胁。

Threats to external validity in the neuroprediction of substance use treatment outcomes.

机构信息

VA Pittsburgh Healthcare System, VISN 4 Mental Illness Research, Education & Clinical Center (MIRECC), Pittsburgh, PA, USA.

Department of Psychology, University of California, Los Angeles, CA, USA.

出版信息

Am J Drug Alcohol Abuse. 2023 Jan 2;49(1):5-20. doi: 10.1080/00952990.2022.2116712. Epub 2022 Sep 13.

Abstract

Tools predicting individual relapse risk would invaluably inform clinical decision-making (e.g. level-of-care) in substance use treatment. Studies of neuroprediction - use of neuromarkers to predict individual outcomes - have the dual potential to create such tools and inform etiological models leading to new treatments. However, financial limitations, statistical power demands, and related factors encourage restrictive selection criteria, yielding samples that do not fully represent the target population. This problem may be further compounded by a lack of statistical optimism correction in neuroprediction research, resulting in predictive models that are overfit to already-restricted samples. This systematic review aims to identify potential threats to external validity related to restrictive selection criteria and underutilization of optimism correction in the existing neuroprediction literature targeting substance use treatment outcomes. Sixty-seven studies of neuroprediction in substance use treatment were identified and details of sample selection criteria and statistical optimism correction were extracted. Most publications were found to report restrictive selection criteria (e.g. excluding psychiatric (94% of publications) and substance use comorbidities (69% of publications)) that would rule-out a considerable portion of the treatment population. Furthermore, only 21% of publications reported optimism correction. Restrictive selection criteria and underutilization of optimism correction are common in the existing literature and may limit the generalizability of identified neural predictors to the target population whose treatment they would ultimately inform. Greater attention to the inclusivity and generalizability of addiction neuroprediction research, as well as new opportunities provided through open science initiatives, have the potential to address this issue.

摘要

预测个体复发风险的工具将非常有助于指导物质使用治疗中的临床决策(例如,护理水平)。神经预测研究——使用神经标志物来预测个体结果——具有双重潜力,可以创建此类工具,并为导致新治疗方法的病因模型提供信息。然而,财务限制、统计能力需求以及相关因素鼓励采用限制性选择标准,从而产生不完全代表目标人群的样本。这个问题可能由于神经预测研究中缺乏统计乐观性校正而进一步加剧,导致预测模型过度适应已经受限的样本。本系统评价旨在确定与限制性选择标准和神经预测文献中对物质使用治疗结果的乐观性校正利用不足相关的潜在外部有效性威胁。确定了 67 项针对物质使用治疗的神经预测研究,并提取了样本选择标准和统计乐观性校正的详细信息。发现大多数出版物报告了限制性选择标准(例如排除精神病学(94%的出版物)和物质使用共病(69%的出版物)),这些标准将排除相当一部分治疗人群。此外,只有 21%的出版物报告了乐观性校正。限制性选择标准和对乐观性校正的利用不足在现有文献中很常见,可能会限制已确定的神经预测因素对其最终将为其提供信息的目标人群的普遍性。更多关注成瘾神经预测研究的包容性和普遍性,以及开放科学倡议提供的新机会,有可能解决这个问题。

相似文献

本文引用的文献

2
Predicting the future of neuroimaging predictive models in mental health.预测精神健康领域神经影像学预测模型的未来。
Mol Psychiatry. 2022 Aug;27(8):3129-3137. doi: 10.1038/s41380-022-01635-2. Epub 2022 Jun 13.
8
Personalizing the Treatment of Substance Use Disorders.个性化物质使用障碍的治疗
Am J Psychiatry. 2020 Feb 1;177(2):113-116. doi: 10.1176/appi.ajp.2019.19121284.
9
Machine Learning With Neuroimaging: Evaluating Its Applications in Psychiatry.机器学习与神经影像学:评估其在精神病学中的应用。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2020 Aug;5(8):791-798. doi: 10.1016/j.bpsc.2019.11.007. Epub 2019 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验