Suppr超能文献

基于纤维素纳米纤维碳气凝胶的单钴原子催化剂用于高效氧还原和锌空气电池。

Cellulose nanofibers carbon aerogel based single-cobalt-atom catalyst for high-efficiency oxygen reduction and zinc-air battery.

机构信息

College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an 710021, China; Department of Applied Chemistry, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.

College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an 710021, China.

出版信息

J Colloid Interface Sci. 2023 Jan;629(Pt A):778-785. doi: 10.1016/j.jcis.2022.09.035. Epub 2022 Sep 8.

Abstract

Single-atom catalysts (SACs) have opened up unprecedented possibilities for expediting oxygen reduction reaction (ORR) kinetics owing to their ultrahigh intrinsic activities. However, precisely controlling over the atomically dispersed metal-N sites on carbon support while fulfilling the utmost utilization of metal atoms remain the key obstacles. Here, atomically distributed Co-N sites anchored on N-doped carbon nanofibers aerogel (Co SAs/NCNA) is controllably attained through a direct pyrolysis of metal-chelated cellulose nanofibers (TOCNFs-Cd/Co) hydrogel precursor. The usage of Cd salt assists the assembly of cross-linked aerogel, creates a large number of interior micropores and defects, and favors the physical isolation of Co atoms. The hierarchically porous biomass carbon aerogel (2265.1 m/g) offers an advantageous platform to facilitate accessibility of the catalytic centers, also renders rapid mass diffusion and electron-transfer paths throughout its 3D architecture. Notably, Co SAs/NCNA affords a paramount ORR activity and respectable durability when integrated into zinc-air battery devices.

摘要

单原子催化剂 (SACs) 由于其超高的本征活性,为加速氧还原反应 (ORR) 动力学开辟了前所未有的可能性。然而,在最大限度地利用金属原子的同时,精确控制碳载体上原子分散的金属-N 位仍然是关键障碍。在这里,通过直接热解金属螯合纤维素纳米纤维 (TOCNFs-Cd/Co) 水凝胶前体,可控地获得了锚定在氮掺杂碳纳米纤维气凝胶上的原子分散 Co-N 位 (Co SAs/NCNA)。Cd 盐的使用有助于交联气凝胶的组装,形成大量的内微孔和缺陷,并有利于 Co 原子的物理隔离。分级多孔生物质碳气凝胶 (2265.1 m/g) 提供了一个有利的平台,有利于催化中心的可及性,也在其 3D 结构中提供了快速的质量扩散和电子转移途径。值得注意的是,当 Co SAs/NCNA 被整合到锌空气电池装置中时,它提供了卓越的 ORR 活性和令人满意的耐久性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验