Gürer Can, Draxler Clemens
UMIT TIROL - Private University for Health Sciences and Health Technology, Hall i.T., Austria.
Br J Math Stat Psychol. 2023 Feb;76(1):154-191. doi: 10.1111/bmsp.12287. Epub 2022 Sep 14.
Recent detection methods for Differential Item Functioning (DIF) include approaches like Rasch Trees, DIFlasso, GPCMlasso and Item Focussed Trees, all of which - in contrast to well established methods - can handle metric covariates inducing DIF. A new estimation method shall address their downsides by mainly aiming at combining three central virtues: the use of conditional likelihood for estimation, the incorporation of linear influence of metric covariates on item difficulty and the possibility to detect different DIF types: certain items showing DIF, certain covariates inducing DIF, or certain covariates inducing DIF in certain items. Each of the approaches mentioned lacks in two of these aspects. We introduce a method for DIF detection, which firstly utilizes the conditional likelihood for estimation combined with group Lasso-penalization for item or variable selection and L1-penalization for interaction selection, secondly incorporates linear effects instead of approximation through step functions, and thirdly provides the possibility to investigate any of the three DIF types. The method is described theoretically, challenges in implementation are discussed. A dataset is analysed for all DIF types and shows comparable results between methods. Simulation studies per DIF type reveal competitive performance of cmlDIFlasso, particularly when selecting interactions in case of large sample sizes and numbers of parameters. Coupled with low computation times, cmlDIFlasso seems a worthwhile option for applied DIF detection.
近期用于检测项目功能差异(DIF)的方法包括如拉施树、DIFlasso、广义部分信贷模型lasso(GPCMlasso)和项目聚焦树等,与成熟方法相比,所有这些方法都能够处理引发DIF的计量协变量。一种新的估计方法旨在通过主要结合三个核心优点来解决它们的缺点:使用条件似然进行估计、纳入计量协变量对项目难度的线性影响以及检测不同DIF类型的可能性,即某些项目显示DIF、某些协变量引发DIF或某些协变量在某些项目中引发DIF。上述每种方法在这三个方面中都缺少两个方面。我们介绍一种用于DIF检测的方法,该方法首先利用条件似然进行估计,并结合组套索惩罚进行项目或变量选择以及L1惩罚进行交互作用选择;其次纳入线性效应而非通过阶梯函数进行近似;第三提供研究三种DIF类型中任何一种的可能性。从理论上描述了该方法,并讨论了实施过程中的挑战。针对所有DIF类型分析了一个数据集,结果显示各方法之间具有可比的结果。针对每种DIF类型的模拟研究揭示了cmlDIFlasso的竞争性能,特别是在大样本量和参数数量情况下选择交互作用时。再加上计算时间短,cmlDIFlasso似乎是应用DIF检测的一个值得选择的方法。