Services Gériatriques Spécialisés, CIUSSS de la Capitale-Nationale, Québec, Canada.
Département de Physique, Cégep Limoilou, Québec City, Canada.
J Am Geriatr Soc. 2023 Jan;71(1):214-220. doi: 10.1111/jgs.18029. Epub 2022 Sep 14.
The Montreal Cognitive Assessment (MoCA) is an established cognitive screening tool in older adults. It remains unclear, however, how to interpret its scores over time and distinguish age-associated cognitive decline (AACD) from early neurodegeneration. We aimed to create cognitive charts using the MoCA for longitudinal evaluation of AACD in clinical practice.
We analyzed data from the National Alzheimer's Coordinating Center (9684 participants aged 60 years or older) who completed the MoCA at baseline. We developed a linear regression model for the MoCA score as a function of age and education. Based on this model, we generated the Cognitive Charts-MoCA designed to optimize accuracy for distinguishing participants with MCI and dementia from healthy controls. We validated our model using two separate data sets.
For longitudinal evaluation of the Cognitive Charts-MoCA, sensitivity (SE) was 89%, 95% confidence interval (CI): [86%, 92%] and specificity (SP) 79%, 95% CI: [77%, 81%], hence showing better performance than fixed cutoffs of MoCA (SE 82%, 95% CI: [79%, 85%], SP 68%, 95% CI: [67%, 70%]). For current cognitive status or baseline measurement, the Cognitive Charts-MoCA had a SE of 81%, 95% CI: [79%, 82%], SP of 84%, 95% CI: [83%, 85%] in distinguishing healthy controls from mild cognitive impairment or dementia. Results in two additional validation samples were comparable.
The Cognitive Charts-MoCA showed high validity and diagnostic accuracy for determining whether older individuals show abnormal performance on serial MoCAs. This innovative model allows longitudinal cognitive evaluation and enables prompt initiation of investigation and treatment when appropriate.
蒙特利尔认知评估(MoCA)是一种用于老年人的成熟认知筛查工具。然而,其分数如何随时间变化,以及如何区分与年龄相关的认知衰退(AACD)和早期神经退行性变,尚不清楚。我们旨在使用 MoCA 为临床实践中的 AACD 进行纵向评估创建认知图表。
我们分析了在基线时完成 MoCA 测试的国家阿尔茨海默病协调中心(NACC)(9684 名年龄在 60 岁或以上的参与者)的数据。我们开发了 MoCA 分数作为年龄和教育的函数的线性回归模型。基于该模型,我们生成了旨在优化区分 MCI 和痴呆与健康对照者准确性的认知图表-MoCA。我们使用两个独立的数据集验证了我们的模型。
对于认知图表-MoCA 的纵向评估,敏感性(SE)为 89%,95%置信区间(CI):[86%,92%],特异性(SP)为 79%,95%CI:[77%,81%],因此表现优于 MoCA 的固定截断值(SE 82%,95%CI:[79%,85%],SP 68%,95%CI:[67%,70%])。对于当前认知状态或基线测量,认知图表-MoCA 在区分健康对照者与轻度认知障碍或痴呆时,具有 81%的 SE,95%CI:[79%,82%],84%的 SP,95%CI:[83%,85%]。在另外两个验证样本中的结果相当。
认知图表-MoCA 显示出用于确定老年人在连续 MoCA 上是否表现异常的高有效性和诊断准确性。这种创新模型允许进行纵向认知评估,并在适当的时候能够及时启动调查和治疗。