Sharma Sangeeta, Shallcross Sam, Elliott Peter, Dewhurst J Kay
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A, 12489 Berlin, Germany.
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany.
Sci Adv. 2022 Sep 16;8(37):eabq2021. doi: 10.1126/sciadv.abq2021. Epub 2022 Sep 14.
In the field of femtomagnetism, magnetic matter is controlled by ultrafast laser pulses; here, we show that coupling phonon excitations of the nuclei to spin and charge leads to femto-phono-magnetism, a powerful route to control magnetic order at ultrafast times. With state-of-the-art theoretical simulations of coupled spin, charge, and lattice dynamics, we identify strong nonadiabatic spin-phonon coupled modes that dominate early time spin dynamics. Activating these phonon modes that we show leads to an additional (up to 40% extra) loss of moment in iron-platinum occurring within 40 femtoseconds of the pump laser pulse. Underpinning this enhanced ultrafast loss of spin moment, we identify a physical mechanism in which minority spin current drives an enhanced intersite minority charge transfer, in turn promoting increased on-site spin flips. Our finding demonstrates that the nuclear system, often assumed to play the role of an energy and angular momentum sink, when selectively preexcited, can play a profound role in controlling femtosecond spin dynamics in materials.
在飞秒磁学领域,磁性物质由超快激光脉冲控制;在此,我们表明,将原子核的声子激发与自旋和电荷相耦合会产生飞秒声子磁学,这是一种在超快时间尺度上控制磁序的有效途径。通过对自旋、电荷和晶格动力学进行的前沿理论模拟,我们确定了主导早期自旋动力学的强非绝热自旋 - 声子耦合模式。激活我们所展示的这些声子模式会导致铁铂合金在泵浦激光脉冲后的40飞秒内额外损失(高达40%)的磁矩。在这种增强的超快自旋磁矩损失的背后,我们确定了一种物理机制,即少数自旋电流驱动增强的位点间少数电荷转移,进而促进位点内自旋翻转增加。我们的发现表明,通常被认为起到能量和角动量汇作用的核系统,在被选择性预激发时,能够在控制材料中的飞秒自旋动力学方面发挥深远作用。