Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Reina Mercedes 10, 41012 Sevilla, Spain.
Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo s/n, 15705 Santiago de Compostela, Spain.
Environ Sci Technol. 2022 Oct 4;56(19):13975-13984. doi: 10.1021/acs.est.2c03149. Epub 2022 Sep 14.
Recent research has demonstrated that chemotactic bacteria can disperse inside microsized pores while traveling toward favorable conditions. Microbe-microbe cotransport might enable nonmotile bacteria to be carried with motile partners to enhance their dispersion and reduce their deposition in porous systems. The aim of this study was to demonstrate the enhancement in the dispersion of nonmotile bacteria ( VM552, a polycyclic aromatic hydrocarbon-degrader, and sp. D4, a hexachlorocyclohexane-degrader, through micrometer-sized pores near the exclusion-cell-size limit, in the presence of motile G7 cells. For this purpose, we used bioreactors equipped with two chambers that were separated with membrane filters with 3, 5, and 12 μm pore sizes and capillary polydimethylsiloxane (PDMS) microarrays (20 μm × 35 μm × 2.2 mm). The cotransport of nonmotile bacteria occurred exclusively in the presence of a chemoattractant concentration gradient, and therefore, a directed flow of motile cells. This cotransport was more intense in the presence of larger pores (12 μm) and strong chemoeffectors (γ-aminobutyric acid). The mechanism that governed cotransport at the cell scale involved mechanical pushing and hydrodynamic interactions. Chemotaxis-mediated cotransport of bacterial degraders and its implications in pore accessibility opens new avenues for the enhancement of bacterial dispersion in porous media and the biodegradation of heterogeneously contaminated scenarios.
最近的研究表明,趋化细菌可以在朝着有利条件的方向移动时在微尺度孔隙内扩散。微生物-微生物共运输可能使非运动细菌与运动伙伴一起携带,从而增强其分散性并减少在多孔系统中的沉积。本研究的目的是证明非运动细菌(VM552,多环芳烃降解菌和 sp. D4,六氯环己烷降解菌)通过存在趋化性 G7 细胞时,在接近排除细胞尺寸极限的微米级孔隙中,分散性增强。为此,我们使用了配备两个室的生物反应器,这两个室通过具有 3、5 和 12 μm 孔径的膜过滤器和毛细管聚二甲基硅氧烷(PDMS)微阵列(20 μm×35 μm×2.2 mm)进行分离。非运动细菌的共运输仅在存在化学引诱剂浓度梯度和因此,运动细胞的定向流动时发生。这种共运输在较大的孔隙(12 μm)和较强的化学引诱剂(γ-氨基丁酸)存在时更为强烈。在细胞尺度上控制共运输的机制涉及机械推动和流体动力相互作用。细菌降解剂的趋化性介导共运输及其对孔隙可及性的影响为增强多孔介质中细菌的分散性和异质污染情景中的生物降解开辟了新途径。