Université Paris Cité, CNRS, LIED UMR 8236, F-75006 Paris, France.
Agoranov, F-75006 Paris, France.
Bioinspir Biomim. 2022 Oct 13;17(6). doi: 10.1088/1748-3190/ac9208.
The number of published scientific articles is increasing dramatically and makes it difficult to keep track of research topics. This is particularly difficult in interdisciplinary research areas where different communities from different disciplines are working together. It would be useful to develop methods to automate the detection of research topics in a research domain. Here we propose a natural language processing (NLP) based method to automatically detect topics in defined corpora. We start by automatically generating a global state of the art of Living Machines conferences. Our NLP-based method classifies all published papers into different clusters corresponding to the research topic published in these conferences. We perform the same study on all papers published in the journals Bioinspiration & Biomimetics and Soft Robotics. In total this analysis concerns 2099 articles. Next, we analyze the intersection between the research themes published in the conferences and the corpora of these two journals. We also examine the evolution of the number of papers per research theme which determines the research trends. Together, these analyses provide a snapshot of the current state of the field, help to highlight open questions, and provide insights into the future.
发表的科学文章数量正在急剧增加,使得跟踪研究课题变得困难。在跨学科研究领域,不同学科的不同社区合作,这一点尤其困难。开发方法来自动检测研究领域中的研究课题将是很有用的。在这里,我们提出了一种基于自然语言处理(NLP)的方法,用于自动检测定义语料库中的主题。我们首先自动生成 Living Machines 会议的全局最新研究进展。我们的基于 NLP 的方法将所有已发表的论文分类为对应于这些会议中发表的研究主题的不同集群。我们对发表在期刊《生物灵感与仿生学》和《软机器人》上的所有论文进行了相同的研究。总的来说,这项分析涉及 2099 篇文章。接下来,我们分析会议上发表的研究主题与这两个期刊的语料库之间的交集。我们还研究了每个研究主题的论文数量的演变,这决定了研究趋势。这些分析共同提供了该领域当前状态的快照,有助于突出存在的问题,并洞察未来。