Suppr超能文献

通过全固态电解质门控在LaSrCoO中实现压缩应变促进的快速氧迁移与可逆拓扑转变

Compressive-Strain-Facilitated Fast Oxygen Migration with Reversible Topotactic Transformation in LaSrCoO via All-Solid-State Electrolyte Gating.

作者信息

Yin Zhuo, Wang Jianlin, Wang Jing, Li Jia, Zhou Houbo, Zhang Cheng, Zhang Hui, Zhang Jine, Shen Feiran, Hao Jiazheng, Yu Zibing, Gao Yihong, Wang Yangxin, Chen Yunzhong, Sun Ji-Rong, Bai Xuedong, Wang Jian-Tao, Hu Fengxia, Zhao Tong-Yun, Shen Baogen

机构信息

Beijing National Laboratory for Condensed Matter physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China.

出版信息

ACS Nano. 2022 Sep 27;16(9):14632-14643. doi: 10.1021/acsnano.2c05243. Epub 2022 Sep 15.

Abstract

Modifying the crystal structure and corresponding functional properties of complex oxides by regulating their oxygen content has promising applications in energy conversion and chemical looping, where controlling oxygen migration plays an important role. Therefore, finding an efficacious and feasible method to facilitate oxygen migration has become a critical requirement for practical applications. Here, we report a compressive-strain-facilitated oxygen migration with reversible topotactic phase transformation (RTPT) in LaSrCoO films based on all-solid-state electrolyte gating modulation. With the lattice strain changing from tensile to compressive strain, significant reductions in modulation duration (∼72%) and threshold voltage (∼70%) for the RTPT were observed, indicating great promotion of RTPT by compressive strain. Density functional theory calculations verify that such compressive-strain-facilitated efficient RTPT comes from significant reduction of the oxygen migration barrier in compressive-strained films. Further, ac-STEM, EELS, and sXAS investigations reveal that varying strain from tensile to compressive enhances the Co 3d band filling, thereby suppressing the Co-O hybrid bond in oxygen vacancy channels, elucidating the micro-origin of such compressive-strain-facilitated oxygen migration. Our work suggests that controlling electronic orbital occupation of Co ions in oxygen vacancy channels may help facilitate oxygen migration, providing valuable insights and practical guidance for achieving highly efficient oxygen-migration-related chemical looping and energy conversion with complex oxides.

摘要

通过调节复合氧化物的氧含量来改变其晶体结构和相应的功能特性,在能量转换和化学链反应中具有广阔的应用前景,其中控制氧迁移起着重要作用。因此,找到一种有效且可行的促进氧迁移的方法已成为实际应用的关键需求。在此,我们报道了基于全固态电解质门控调制的LaSrCoO薄膜中通过可逆的拓扑相变(RTPT)实现的压应变促进的氧迁移。随着晶格应变从拉伸应变变为压缩应变,观察到RTPT的调制持续时间(约72%)和阈值电压(约70%)显著降低,表明压缩应变极大地促进了RTPT。密度泛函理论计算证实,这种压应变促进的高效RTPT源于压缩应变薄膜中氧迁移势垒的显著降低。此外,交流扫描透射电子显微镜(ac-STEM)、电子能量损失谱(EELS)和软X射线吸收光谱(sXAS)研究表明,从拉伸应变到压缩应变的变化增强了Co 3d能带填充,从而抑制了氧空位通道中的Co-O杂化键,阐明了这种压应变促进氧迁移的微观起源。我们的工作表明,控制氧空位通道中Co离子的电子轨道占据可能有助于促进氧迁移,为利用复合氧化物实现高效的与氧迁移相关的化学链反应和能量转换提供了有价值的见解和实际指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验