Academic Assembly (Faculty of Science), Yamagata University, 1-4-12 Kojirakawa, Yamagata-shi, Yamagata 990-8560, Japan.
The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8581, Japan.
J Chem Phys. 2022 Sep 14;157(10):104114. doi: 10.1063/5.0096645.
We propose a scheme for ab initio configurational sampling in multicomponent crystalline solids using Behler-Parinello type neural network potentials (NNPs) in an unconventional way: the NNPs are trained to predict the energies of relaxed structures from the perfect lattice with configurational disorder instead of the usual way of training to predict energies as functions of continuous atom coordinates. An active learning scheme is employed to obtain a training set containing configurations of thermodynamic relevance. This enables bypassing of the structural relaxation procedure that is necessary when applying conventional NNP approaches to the lattice configuration problem. The idea is demonstrated on the calculation of the temperature dependence of the degree of A/B site inversion in three spinel oxides, MgAlO, ZnAlO, and MgGaO. The present scheme may serve as an alternative to cluster expansion for "difficult" systems, e.g., complex bulk or interface systems with many components and sublattices that are relevant to many technological applications today.
我们提出了一种使用贝赫勒-帕里内洛类型神经网络势(NNP)对多组分晶体固体进行从头算构型采样的方案,这是一种非常规的方法:NNP 经过训练,可以从具有构型无序的完美晶格预测弛豫结构的能量,而不是通常的训练方法,即将能量作为连续原子坐标的函数进行预测。采用主动学习方案来获取包含热力学相关构型的训练集。这使得在将传统 NNP 方法应用于晶格构型问题时,可以绕过结构弛豫过程。该想法在计算三种尖晶石氧化物(MgAlO、ZnAlO 和 MgGaO)中 A/B 位反转程度的温度依赖性方面得到了验证。该方案可作为“困难”系统的团簇展开的替代方法,例如,具有许多组分和子晶格的复杂体或界面系统,这些系统与当今许多技术应用相关。