Suppr超能文献

使用委员会神经网络势在混合 DFT 精度下对赤铁矿/液态水界面的纳秒溶剂化动力学进行研究。

Nanosecond solvation dynamics of the hematite/liquid water interface at hybrid DFT accuracy using committee neural network potentials.

机构信息

Department of Physics and Astronomy and Thomas Young Centre, University College London, London, WC1E 6BT, UK.

出版信息

Phys Chem Chem Phys. 2022 Jun 29;24(25):15365-15375. doi: 10.1039/d2cp01708c.

Abstract

Metal oxide/water interfaces play an important role in biology, catalysis, energy storage and photocatalytic water splitting. The atomistic structure at these interfaces is often difficult to characterize by experimental techniques, whilst results from molecular dynamics simulations tend to be uncertain due to the limited length and time scales accessible. In this work, we train a committee neural network potential to simulate the hematite/water interface at the hybrid DFT level of theory to reach the nanosecond timescale and systems containing more than 3000 atoms. The NNP enables us to converge dynamical properties, not possible with brute-force molecular dynamics. Our simulations uncover a rich solvation dynamics at the hematite/water interface spanning three different time scales: picosecond H-bond dynamics between surface hydroxyls and the first water layer, in-plane/out-of-plane tilt motion of surface hydroxyls on the 10 ps time scale, and diffusion of water molecules from the oxide surface characterized by a mean residence lifetime of about 60 ps. Calculation of vibrational spectra confirm that H-bonds between surface hydroxyls and first layer water molecules are stronger than H-bonds in bulk water. Our study showcases how state of the art machine learning approaches can routinely be utilized to explore the structural dynamics at transition metal oxide interfaces with complex electronic structure. It foreshadows that c-NNPs are a promising tool to tackle the sampling problem in electrochemistry with explicit solvent molecules.

摘要

金属氧化物/水界面在生物学、催化、能量存储和光催化水分解中起着重要作用。这些界面的原子结构通常难以用实验技术来表征,而分子动力学模拟的结果由于可及的长度和时间尺度有限往往不确定。在这项工作中,我们训练了一个委员会神经网络势来模拟混合 DFT 理论水平的赤铁矿/水界面,以达到纳秒时间尺度和包含超过 3000 个原子的系统。NNP 使我们能够收敛动力学性质,而这是用暴力分子动力学不可能做到的。我们的模拟揭示了赤铁矿/水界面处丰富的溶剂化动力学,跨越三个不同的时间尺度:表面羟基和第一层水分子之间的皮秒氢键动力学、表面羟基在 10 ps 时间尺度上的面内/面外倾斜运动,以及从氧化物表面扩散的水分子,其特征是平均停留寿命约为 60 ps。振动光谱的计算证实了表面羟基和第一层水分子之间的氢键比体相水中的氢键更强。我们的研究展示了如何利用最先进的机器学习方法来探索具有复杂电子结构的过渡金属氧化物界面的结构动力学。它预示着 c-NNP 是解决电化学中具有明确溶剂分子的采样问题的有前途的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验