Suppr超能文献

基于伪标签的多样化深度神经网络集成用于社交借贷还款预测。

Ensemble of diverse deep neural networks with pseudo-labels for repayment prediction in social lending.

机构信息

Department of Computer Science, 26721Yonsei University, Seoul, Korea.

出版信息

Sci Prog. 2022 Jul-Sep;105(3):368504221124004. doi: 10.1177/00368504221124004.

Abstract

In peer-to-peer (P2P) social lending, it is important to predict the repayment of borrowers. P2P lending data are generated in real-time, but most of them are pending to decide the repayment because the deadline is not yet expired. Adding the unexpired data with appropriate labels into the training set could improve the performance of a prediction model, but the pseudo-labels cannot be certainly precise. In this paper, we propose an ensemble classifier composed of diverse convolutional neural networks (CNNs) of GoogLeNet, ResNet and DenseNet for the repayment prediction in social lending with the pseudo-labels approximated by an uncertainty handling scheme. The additional data labeled by Dempster-Shafer fusion of two semi-supervised learning methods boost up training of various models of CNNs, which are combined by weighted voting. A diversity measure is applied to constructing a pool of different models of CNNs that extract the effective features in the social lending data with labeling noise and predict the borrower's loan status. The experiment with the real dataset of 855,502 cases from Lending Club confirms that the diverse ensemble combined with weighted voting achieves the highest performance and outperforms conventional methods.

摘要

在点对点(P2P)社交借贷中,预测借款人的还款情况很重要。P2P 借贷数据是实时生成的,但由于期限尚未届满,大多数数据仍有待决定还款。将未到期数据添加到具有适当标签的训练集中可以提高预测模型的性能,但伪标签不能完全准确。在本文中,我们提出了一种由 GoogLeNet、ResNet 和 DenseNet 等多种卷积神经网络(CNN)组成的集成分类器,用于通过不确定性处理方案用近似伪标签进行社交借贷的还款预测。通过两种半监督学习方法的 Dempster-Shafer 融合对额外数据进行标记,增强了各种 CNN 模型的训练,这些模型通过加权投票进行组合。多样性度量用于构建一组不同的 CNN 模型,这些模型在具有标记噪声的社交借贷数据中提取有效特征,并预测借款人的贷款状况。通过来自 Lending Club 的 855502 个案例的真实数据集进行的实验证实,结合加权投票的多样化集成实现了最高性能,优于传统方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d998/10450474/2f9a57ed3212/10.1177_00368504221124004-fig3.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验