Suppr超能文献

基于深度学习神经网络的在线贷款违约预测模型。

Online Loan Default Prediction Model Based on Deep Learning Neural Network.

机构信息

School of Statistics and Big Data, Henan University of Economics and Law, Zhengzhou 450046, Henan, China.

出版信息

Comput Intell Neurosci. 2022 Aug 8;2022:4276253. doi: 10.1155/2022/4276253. eCollection 2022.

Abstract

With the rapid development of Internet loans and the demand for Internet loans, Internet-based loan default prediction is particularly important. P2P online lending is based on Internet technology. With the popularization of personal PCs and mobile terminals, the borrower's financing cost has been reduced to a large extent, and the efficiency of the borrower's capital utilization has also been improved to a considerable level. Making full use of the existing data of the online lending platform, integrating third-party data, and predicting the default behavior of users are the major directions of future development. This paper mainly studies the network loan default prediction model based on DPNN. This paper first analyzes the problems and risks of the P2P online lending platform, then introduces the principle and characteristics of BPNN in detail, and determines the credit risk rating process for online lending based on BPNN. With the help of data analysis and processing software, after cleaning and variable selection of credit customer data provided by lending clubs, a set of corresponding online lending default risk assessment models are established through BPNN. This paper simulates the network loan default assessment model of the BPNN model and compares it with the support vector machine and regression model. The experimental results show that the highest accuracy rate of the BPNN model is 98.01% and the highest recall rate is 99.82%, which is better than the other two models; the AUC value of BPNN is 0.79, which is significantly higher than that of support vector machine and regression model. The above results show that the online loan default prediction model based on DPNN has high application value in practice. Predicting the probability of customer default risk in advance will help reduce the risk of P2P companies and lenders, improve the competitiveness of P2P lending institutions, and promote the development of domestic P2P platforms to be more stable.

摘要

随着互联网贷款的快速发展和互联网贷款需求的增加,基于互联网的贷款违约预测尤为重要。P2P 网络借贷是基于互联网技术的。随着个人 PC 和移动终端的普及,借款人的融资成本大大降低,借款人资金利用效率也得到了相当程度的提高。充分利用网络借贷平台现有的数据,整合第三方数据,并预测用户的违约行为,是未来发展的主要方向。本文主要研究基于 DPNN 的网络贷款违约预测模型。本文首先分析了 P2P 网络借贷平台存在的问题和风险,然后详细介绍了 BPNN 的原理和特点,并确定了基于 BPNN 的网络借贷信用风险评级流程。借助数据分析和处理软件,对借贷俱乐部提供的信贷客户数据进行清洗和变量选择后,通过 BPNN 建立了一套相应的网络贷款违约风险评估模型。本文模拟了 BPNN 模型的网络贷款违约评估模型,并与支持向量机和回归模型进行了比较。实验结果表明,BPNN 模型的最高准确率为 98.01%,最高召回率为 99.82%,优于其他两个模型;BPNN 的 AUC 值为 0.79,明显高于支持向量机和回归模型。上述结果表明,基于 DPNN 的网络贷款违约预测模型在实践中具有较高的应用价值。提前预测客户违约风险的概率有助于降低 P2P 公司和放款人的风险,提高 P2P 借贷机构的竞争力,促进国内 P2P 平台的发展更加稳定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dc/9377862/320b7d2304c5/CIN2022-4276253.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验