Suppr超能文献

灵活的半参数模态回归分析时间事件数据。

Flexible semiparametric mode regression for time-to-event data.

机构信息

Division of Epidemiology and Biometry, Faculty of Medicine and Health Sciences, 11233Carl von Ossietzky University Oldenburg, Germany.

University Hospital for Visceral Surgery, 39892Pius-Hospital Oldenburg, Germany.

出版信息

Stat Methods Med Res. 2022 Dec;31(12):2352-2367. doi: 10.1177/09622802221122406. Epub 2022 Sep 13.

Abstract

The distribution of time-to-event outcomes is usually right-skewed. While for symmetric and moderately skewed data the mean and median are appropriate location measures, the mode is preferable for heavily skewed data as it better represents the center of the distribution. Mode regression has been introduced for uncensored data to model the relationship between covariates and the mode of the outcome. Starting from nonparametric kernel density based mode regression, we examine the use of inverse probability of censoring weights to extend mode regression to handle right-censored data. We add a semiparametric predictor to add further flexibility to the model and we construct a pseudo Akaike's information criterion to select the bandwidth and smoothing parameters. We use simulations to evaluate the performance of our proposed approach. We demonstrate the benefit of adding mode regression to one's toolbox for analyzing survival data on a pancreatic cancer data set from a prospectively maintained cancer registry.

摘要

时间事件结果的分布通常是右偏的。对于对称和中度偏斜的数据,均值和中位数是合适的位置度量,而对于重度偏斜的数据,众数是更好的选择,因为它更能代表分布的中心。模式回归已被引入到无删失数据中,以建立协变量与结果的模式之间的关系。从基于非参数核密度的模式回归开始,我们研究了使用逆概率删失权重将模式回归扩展到处理右删失数据。我们添加了一个半参数预测器,为模型增加了进一步的灵活性,并构建了一个伪 Akaike 信息准则来选择带宽和平滑参数。我们使用模拟来评估我们提出的方法的性能。我们通过对来自前瞻性维护的癌症登记处的胰腺癌数据集的生存数据分析,展示了在分析生存数据时将模式回归添加到工具包中的好处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f0/9703389/b23e4fa38aec/10.1177_09622802221122406-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验