Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
Pediatrics, Shaoxing University School of Medicine, Shaoxing, 312000, China.
Hereditas. 2022 Sep 16;159(1):34. doi: 10.1186/s41065-022-00248-7.
Childhood systemic lupus erythematosus (cSLE) is a multisystemic, life-threatening autoimmune disease. Compared to adults, SLE in childhood is more active, can cause multisystem involvement including renal, neurological and hematological, and can cause cumulative damage across systems more rapidly. Autophagy, one of the core functions of cells, is involved in almost every process of the immune response and has been shown to be associated with many autoimmune diseases, being a key factor in the interplay between innate and adaptive immunity. Autophagy influences the onset, progression and severity of SLE. This paper identifies new biomarkers for the diagnosis and treatment of childhood SLE based on an artificial neural network of autophagy-related genes.
We downloaded dataset GSE100163 from the Gene Expression Omnibus database and used Protein-protein Interaction Network (PPI) and Least Absolute Shrinkage and Selection Operator (LASSO) to screen the signature genes of autophagy-related genes in cSLE. A new artificial neural network model for cSLE diagnosis was constructed using the signature genes. The predictive efficiency of the model was also validated using the dataset GSE65391. Finally, "CIBERSORT" was used to calculate the infiltration of immune cells in cSLE and to analyze the relationship between the signature genes and the infiltration of immune cells.
We identified 37 autophagy-related genes that differed in cSLE and normal samples, and finally obtained the seven most relevant signature genes for cSLE (DDIT3, GNB2L1, CTSD, HSPA8, ULK1, DNAJB1, CANX) by PPI and LASOO regression screening, and constructed an artificial neural network diagnostic model for cSLE. Using this model, we plotted the ROC curves for the training and validation group diagnoses with the area under the curve of 0.976 and 0.783, respectively. Finally, we performed immunoassays on cSLE samples, and the results showed that Plasma cells, Macrophages M0, Dendritic cells activated and Neutrophils were significantly infiltrated in cSLE.
We constructed an artificial neural network diagnostic model of seven autophagy-related genes that can be used for the diagnosis of cSLE. Meanwhile, the characteristic genes affect the immune infiltration of cSLE, which may provide new perspectives for the exploration of cSLE treatment and related mechanisms.
儿童系统性红斑狼疮(cSLE)是一种多系统、危及生命的自身免疫性疾病。与成人相比,儿童 SLE 更为活跃,可引起包括肾脏、神经和血液在内的多系统受累,并可更迅速地在全身各系统引起累积性损害。自噬是细胞的核心功能之一,几乎参与了免疫反应的每一个过程,并已被证明与许多自身免疫性疾病有关,是固有免疫和适应性免疫相互作用的关键因素。自噬影响 SLE 的发病、进展和严重程度。本文基于自噬相关基因的人工神经网络,确定了用于儿童 SLE 诊断和治疗的新生物标志物。
我们从基因表达综合数据库中下载数据集 GSE100163,并使用蛋白质-蛋白质相互作用网络(PPI)和最小绝对收缩和选择算子(LASSO)筛选 cSLE 中自噬相关基因的特征基因。使用特征基因构建了用于 cSLE 诊断的新型人工神经网络模型。还使用数据集 GSE65391 验证了模型的预测效率。最后,使用“CIBERSORT”计算 cSLE 中免疫细胞的浸润,并分析特征基因与免疫细胞浸润的关系。
我们鉴定了 cSLE 与正常样本中存在差异的 37 个自噬相关基因,最终通过 PPI 和 LASOO 回归筛选获得了与 cSLE 最相关的七个特征基因(DDIT3、GNB2L1、CTSD、HSPA8、ULK1、DNAJB1、CANX),并构建了用于 cSLE 的人工神经网络诊断模型。使用该模型,我们分别为训练组和验证组的诊断绘制了 ROC 曲线,曲线下面积分别为 0.976 和 0.783。最后,我们对 cSLE 样本进行了免疫测定,结果表明浆细胞、M0 期巨噬细胞、活化的树突状细胞和中性粒细胞在 cSLE 中明显浸润。
我们构建了一个可以用于 cSLE 诊断的七个自噬相关基因的人工神经网络诊断模型。同时,特征基因影响 cSLE 的免疫浸润,这可能为探索 cSLE 的治疗和相关机制提供新的视角。