Suppr超能文献

一步合成新型天然矿物衍生的 Fe@BC 用于增强 Cr(VI)的生物还原:电子传递和微生物代谢的协同作用。

One-step synthesis of a novel natural mineral-derived Fe@BC for enhancing Cr(VI) bioreduction: Synergistic role of electron transfer and microbial metabolism.

机构信息

School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.

Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China.

出版信息

Chemosphere. 2022 Dec;308(Pt 3):136439. doi: 10.1016/j.chemosphere.2022.136439. Epub 2022 Sep 14.

Abstract

Iron minerals, which exert excellent biocompatibility and reactivity with redox-active microorganisms, have attracted attention as a precursor to synthesizing composite materials with higher catalytic efficiency in driving redox-active microorganisms to reduce Cr(VI). However, researches on the effective preparation method of composites, the interaction between bacteria and composite materials and the mechanism of electron transfer are still scarce. In this work, Fe-complex@BC prepared by a one-step method using goethite was used for chromium treatment together with soil microorganisms. The composite was the best-performing in promoting Cr(VI) bioreduction (up to 3.48 mg (L·h)) than Fe-complex (2.26 mg (L·h)) and biochar (0.5 mg (L·h)), even about 19 times higher than that of bioreduction without materials. Specifically, Fe-complex@BC shortened the electron transfer distance due to its excellent adsorption properties for bacteria and Cr(VI). Its high redox activity also promoted Cr(VI) bioreduction by directly enhancing electron transfer. In addition, the presence of the Fe(III)/Fe(II) cycle proved that the active sites of composite could be regenerated to reduce Cr(VI) persistently by receiving extracellular electrons from bacteria. High-throughput 16 S rDNA gene sequencing indicated the composite could promote the proliferation of electrochemically active bacteria, which directly enhanced bioreduction. This study developed the low-cost Fe@BC material prepared by a one-step co-pyrolysis method, which exerts a synergistic effect with soil microorganisms and presents a promising potential for chromium pollution treatment.

摘要

铁矿物质具有出色的生物相容性和与氧化还原活性微生物的反应性,因此作为合成复合材料的前体备受关注,这种复合材料在驱动氧化还原活性微生物还原 Cr(VI) 方面具有更高的催化效率。然而,关于复合材料的有效制备方法、细菌与复合材料之间的相互作用以及电子转移机制的研究仍然很少。在这项工作中,使用针铁矿通过一步法制备的 Fe-配合物@BC 与土壤微生物一起用于处理铬。与 Fe-配合物(2.26mg(L·h))和生物炭(0.5mg(L·h))相比,该复合材料在促进 Cr(VI) 生物还原方面表现最佳(高达 3.48mg(L·h)),甚至比没有材料的生物还原高出约 19 倍。具体而言,由于其对细菌和 Cr(VI) 的优异吸附性能,Fe-配合物@BC 缩短了电子转移距离。其高氧化还原活性还通过直接增强电子转移来促进 Cr(VI) 的生物还原。此外,Fe(III)/Fe(II)循环的存在证明了复合物质点的活性位点可以通过从细菌接收细胞外电子而持续地再生以还原 Cr(VI)。高通量 16S rDNA 基因测序表明,该复合材料可以促进电化学活性细菌的增殖,从而直接增强生物还原。本研究开发了一种通过一步共热解方法制备的低成本 Fe@BC 材料,它与土壤微生物具有协同作用,为铬污染处理提供了有前途的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验