The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, PR China.
The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, PR China.
Acta Biomater. 2022 Nov;153:419-430. doi: 10.1016/j.actbio.2022.09.025. Epub 2022 Sep 14.
Photodynamic therapy (PDT) is a promising cancer treatment modality with advantages of minimal invasiveness, repeatable therapy, and mild systemic toxicity. However, the limited bioavailability of photosensitizer (PS), tumor hypoxia, and the presence of antiapoptotic proteins in cancer cells, has hampered the efficiency of PDT. To address these limitations, herein, we developed a hyaluronic acid (HA) based nanosystem (HA-Ce6-Hemin@DNA-Protamine NPs, HCH@DP) loaded with chlorin e6 (Ce6, as PS), hemin (as mimetic catalase) and antisense oligonucleotide (ASO) of B-cell lymphoma 2 (Bcl-2) anti-apoptosis protein via a simple electrostatic self-assembly method for enhanced PDT of hypoxic solid tumors. The HCH@DP can target deliver the PS and ASO to tumor cells via cancer cell overexpressed HA receptors (i.e., CD44 or RHAMM). The Ce6 was released from HA-ss-Ce6 (HSC conjugates) after the reaction of cleavable disulfide bond with glutathione (GSH), which recovered the fluorescence and phototoxicity of Ce6 upon laser irradiation. Meanwhile, the catalase-mimicking hemin (degradation of HA-eda-hemin by hyaluronidase) decomposed the tumor overdressed endogenous HO to oxygen, which relieved tumor hypoxia and further overcome hypoxia-associated resistance of PDT. Furthermore, the inhibition of Bcl-2 expression by Bcl-2 ASO also greatly improved the cellular sensitivity to PDT. Both in vitro and in vivo results showed the tumor cell targeting ability, hypoxia relief and significantly enhanced antitumor PDT efficacy of HCH@DP for hypoxic tumor cells upon laser irradiation. Thus, by improving the target delivery of PS and ASO, relieving tumor hypoxia, and down-regulation of anti-apoptotic proteins, this HCH@DP nanosystem achieved enhanced PDT efficiency against hypoxic tumors. In general, our work provided a promising strategy to increase the utilization of key components (PS and oxygen) of PDT and the cell sensitivity to PDT by targeting co-delivery PS and oligonucleotides to tumor cells via a biocompatible HA based carrier, thereby achieving efficiently PDT treatment of hypoxic solid tumors with potential translation possibility. STATEMENT OF SIGNIFICANCE: The efficiency of PDT against solid tumor is severely restricted by the limited bioavailability of photosensitizer, tumor hypoxia, and the presence of antiapoptotic proteins in cancer cells. Herein, we have developed an activatable hyaluronic acid (HA) based nanosystem (HA-Ce6-Hemin@DNA-Protamine NPs, HCH@DP) via a simple electrostatic self-assembly method for PDT treatment of hypoxic solid tumors. The HCH@DP enabled to target co-delivery of photosensitizer and antisense oligonucleotide to tumor cells, overcoming tumor hypoxia through in situ oxygen production and improving cellular sensitivity by efficiently reducing anti-apoptosis effect of cancer cells for synergistically enhancing PDT efficiency. This work suggests a promising strategy to develop small molecule drug and oligonucleotides co-delivery nanoplatforms for efficiently PDT treatment of hypoxic solid tumor.
光动力疗法(PDT)是一种有前途的癌症治疗方法,具有微创、可重复治疗和轻度全身毒性的优点。然而,光敏剂(PS)的生物利用度有限、肿瘤缺氧和癌细胞中抗凋亡蛋白的存在,限制了 PDT 的效率。为了解决这些限制,本文通过简单的静电自组装方法,开发了一种基于透明质酸(HA)的纳米系统(HA-Ce6-血卟啉@DNA-鱼精蛋白 NPs,HCH@DP),该纳米系统负载了氯仿 e6(Ce6,作为 PS)、血红素(作为模拟过氧化氢酶)和 B 细胞淋巴瘤 2(Bcl-2)抗凋亡蛋白的反义寡核苷酸(ASO),用于增强缺氧实体瘤的 PDT。HCH@DP 可以通过癌细胞过表达的 HA 受体(即 CD44 或 RHAMM),将 PS 和 ASO 靶向递送至肿瘤细胞。Ce6 从 HA-ss-Ce6(HSC 缀合物)中释放出来,因为可裂解的二硫键与谷胱甘肽(GSH)反应,这恢复了 Ce6 在激光照射下的荧光和光毒性。同时,模拟过氧化氢酶的血红素(透明质酸酶降解 HA-eda-血红素)分解肿瘤过度表达的内源性 HO 为氧气,缓解肿瘤缺氧,并进一步克服 PDT 相关的缺氧相关性耐药性。此外,Bcl-2 ASO 抑制 Bcl-2 表达也极大地提高了细胞对 PDT 的敏感性。体外和体内结果均表明,HCH@DP 在激光照射下对缺氧肿瘤细胞具有肿瘤细胞靶向能力、缓解肿瘤缺氧和显著增强抗肿瘤 PDT 疗效。因此,通过提高 PS 和 ASO 的靶向递送、缓解肿瘤缺氧和下调抗凋亡蛋白,这种 HCH@DP 纳米系统通过基于生物相容性 HA 的载体靶向递送至肿瘤细胞,实现了对缺氧肿瘤的 PDT 效率的提高。总的来说,我们的工作提供了一种有前途的策略,通过基于透明质酸的载体靶向递送至肿瘤细胞,共同递送 PS 和寡核苷酸,从而提高 PDT 的关键成分(PS 和氧气)的利用效率和细胞对 PDT 的敏感性,从而实现缺氧实体瘤的高效 PDT 治疗,具有潜在的转化可能性。
意义声明:PDT 对实体瘤的疗效受到光敏剂生物利用度有限、肿瘤缺氧和癌细胞中抗凋亡蛋白存在的严重限制。在此,我们通过简单的静电自组装方法,开发了一种可激活的透明质酸(HA)基纳米系统(HA-Ce6-血卟啉@DNA-鱼精蛋白 NPs,HCH@DP),用于 PDT 治疗缺氧实体瘤。HCH@DP 能够靶向共递送至肿瘤细胞的光敏剂和反义寡核苷酸,通过原位产生氧气来克服肿瘤缺氧,并通过有效降低癌细胞的抗凋亡作用来提高细胞敏感性,从而协同增强 PDT 效率。这项工作为开发用于高效 PDT 治疗缺氧实体瘤的小分子药物和寡核苷酸共递送纳米平台提供了一种有前途的策略。
J Control Release. 2020-10-10
Drug Deliv Transl Res. 2023-12