文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

单细胞转录组学揭示了主动脉瓣的细胞多样性,以及 PPARγ 在高血脂症期间的免疫调节作用。

Single-cell transcriptomics reveal cellular diversity of aortic valve and the immunomodulation by PPARγ during hyperlipidemia.

机构信息

Department of Life Science, College of Natural Sciences, Hanyang Institute of Bioscience and Biotechnology, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.

Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.

出版信息

Nat Commun. 2022 Sep 17;13(1):5461. doi: 10.1038/s41467-022-33202-2.


DOI:10.1038/s41467-022-33202-2
PMID:36115863
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9482653/
Abstract

Valvular inflammation triggered by hyperlipidemia has been considered as an important initial process of aortic valve disease; however, cellular and molecular evidence remains unclear. Here, we assess the relationship between plasma lipids and valvular inflammation, and identify association of low-density lipoprotein with increased valvular lipid and macrophage accumulation. Single-cell RNA sequencing analysis reveals the cellular heterogeneity of leukocytes, valvular interstitial cells, and valvular endothelial cells, and their phenotypic changes during hyperlipidemia leading to recruitment of monocyte-derived MHC-II macrophages. Interestingly, we find activated PPARγ pathway in Cd36 valvular endothelial cells increased in hyperlipidemic mice, and the conservation of PPARγ activation in non-calcified human aortic valves. While the PPARγ inhibition promotes inflammation, PPARγ activation using pioglitazone reduces valvular inflammation in hyperlipidemic mice. These results show that low-density lipoprotein is the main lipoprotein accumulated in the aortic valve during hyperlipidemia, leading to early-stage aortic valve disease, and PPARγ activation protects the aortic valve against inflammation.

摘要

由高血脂引发的瓣膜炎症被认为是主动脉瓣疾病的一个重要初始过程;然而,细胞和分子证据仍不清楚。在这里,我们评估了血浆脂质与瓣膜炎症之间的关系,并发现了低密度脂蛋白与增加的瓣膜脂质和巨噬细胞积累之间的关联。单细胞 RNA 测序分析揭示了白细胞、瓣膜间质细胞和瓣膜内皮细胞的细胞异质性,以及它们在导致单核细胞衍生的 MHC-II 巨噬细胞募集的高脂血症期间的表型变化。有趣的是,我们发现在高脂血症小鼠中,Cd36 瓣膜内皮细胞中的激活的 PPARγ 途径增加,并且非钙化的人主动脉瓣中存在 PPARγ 激活的保守性。虽然 PPARγ 抑制会促进炎症,但使用吡格列酮激活 PPARγ 会减少高脂血症小鼠的瓣膜炎症。这些结果表明,低密度脂蛋白是高脂血症期间在主动脉瓣中积累的主要脂蛋白,导致早期主动脉瓣疾病,而 PPARγ 激活可保护主动脉瓣免受炎症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acc/9482653/58aefeffa4f2/41467_2022_33202_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acc/9482653/b5e60f1800a5/41467_2022_33202_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acc/9482653/2be3f59943ac/41467_2022_33202_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acc/9482653/fb8bf558feb2/41467_2022_33202_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acc/9482653/652ac31c79dd/41467_2022_33202_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acc/9482653/585535f83708/41467_2022_33202_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acc/9482653/5e1daa9644cd/41467_2022_33202_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acc/9482653/ba8c6be01b5c/41467_2022_33202_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acc/9482653/58aefeffa4f2/41467_2022_33202_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acc/9482653/b5e60f1800a5/41467_2022_33202_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acc/9482653/2be3f59943ac/41467_2022_33202_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acc/9482653/fb8bf558feb2/41467_2022_33202_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acc/9482653/652ac31c79dd/41467_2022_33202_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acc/9482653/585535f83708/41467_2022_33202_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acc/9482653/5e1daa9644cd/41467_2022_33202_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acc/9482653/ba8c6be01b5c/41467_2022_33202_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0acc/9482653/58aefeffa4f2/41467_2022_33202_Fig8_HTML.jpg

相似文献

[1]
Single-cell transcriptomics reveal cellular diversity of aortic valve and the immunomodulation by PPARγ during hyperlipidemia.

Nat Commun. 2022-9-17

[2]
Pioglitazone attenuates valvular calcification induced by hypercholesterolemia.

Arterioscler Thromb Vasc Biol. 2013-1-3

[3]
Potential pathological roles for oxidized low-density lipoprotein and scavenger receptors SR-AI, CD36, and LOX-1 in aortic valve stenosis.

Atherosclerosis. 2014-8

[4]
Endoplasmic reticulum stress participates in aortic valve calcification in hypercholesterolemic animals.

Arterioscler Thromb Vasc Biol. 2013-8-8

[5]
Protective Role of Smad6 in Inflammation-Induced Valvular Cell Calcification.

J Cell Biochem. 2015-10

[6]
Inhibition of Macrophage CD36 Expression and Cellular Oxidized Low Density Lipoprotein (oxLDL) Accumulation by Tamoxifen: A PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR)γ-DEPENDENT MECHANISM.

J Biol Chem. 2016-8-12

[7]
High-density lipoproteins (HDL) are present in stenotic aortic valves and may interfere with the mechanisms of valvular calcification.

Atherosclerosis. 2011-8-22

[8]
Valvular interstitial cells suppress calcification of valvular endothelial cells.

Atherosclerosis. 2015-9

[9]
Age-related changes in aortic valve hemostatic protein regulation.

Arterioscler Thromb Vasc Biol. 2013-10-31

[10]
Enzymatically Modified Low-Density Lipoprotein Is Present in All Stages of Aortic Valve Sclerosis: Implications for Pathogenesis of the Disease.

J Am Heart Assoc. 2015-10-16

引用本文的文献

[1]
Recent Advances in Deciphering Normal and Diseased Aortic Valve Biology Using Transcriptomic Technologies.

J Cell Mol Med. 2025-9

[2]
Diabetes and calcific aortic valve disease: controversy of clinical outcomes in diabetes after aortic valve replacement.

Front Endocrinol (Lausanne). 2025-7-30

[3]
Transcriptomic Signatures of Calcific Aortic Valve Stenosis Severity in Human Tricuspid and Bicuspid Aortic Valves.

JACC Basic Transl Sci. 2025-6

[4]
Diabetes and calcific aortic valve disease: implications of glucose-lowering medication as potential therapy.

Front Pharmacol. 2025-4-28

[5]
Navigating the Landscape of Translational Medicine of Calcific Aortic Valve Disease: Bridging Bench to Bedside.

JACC Asia. 2025-4

[6]
Sex differences in the association between serum α-Klotho levels and hyperlipidemia: a cross-sectional study from NHANES 2013-2016.

Sci Rep. 2025-2-10

[7]
Network pharmacology and experimental verification to investigate the mechanism of isoliquiritigenin for the treatment of Alzheimer's disease.

Sci Rep. 2025-2-5

[8]
Macrophages in Calcific Aortic Valve Disease: Paracrine and Juxtacrine Disease Drivers.

Biomolecules. 2024-12-2

[9]
Calcific aortic stenosis: omics-based target discovery and therapy development.

Eur Heart J. 2025-2-14

[10]
Effect of genistein supplementation on microenvironment regulation of breast tumors in obese mice.

Breast Cancer Res. 2024-10-25

本文引用的文献

[1]
Cell-Type Transcriptome Atlas of Human Aortic Valves Reveal Cell Heterogeneity and Endothelial to Mesenchymal Transition Involved in Calcific Aortic Valve Disease.

Arterioscler Thromb Vasc Biol. 2020-10-22

[2]
Secreted Factors From Proinflammatory Macrophages Promote an Osteoblast-Like Phenotype in Valvular Interstitial Cells.

Arterioscler Thromb Vasc Biol. 2020-9-17

[3]
Genetic and In Vitro Inhibition of and Calcific Aortic Valve Stenosis.

JACC Basic Transl Sci. 2020-7-1

[4]
Macrophages Promote Aortic Valve Cell Calcification and Alter STAT3 Splicing.

Arterioscler Thromb Vasc Biol. 2020-4-16

[5]
Global, Regional, and National Burden of Calcific Aortic Valve and Degenerative Mitral Valve Diseases, 1990-2017.

Circulation. 2020-5-26

[6]
Plasma lipids and risk of aortic valve stenosis: a Mendelian randomization study.

Eur Heart J. 2020-10-21

[7]
Single-Cell Transcriptome Atlas of Murine Endothelial Cells.

Cell. 2020-2-13

[8]
CCL2 and CXCL12 Derived from Mesenchymal Stromal Cells Cooperatively Polarize IL-10+ Tissue Macrophages to Mitigate Gut Injury.

Cell Rep. 2020-2-11

[9]
Deficiency of Circulating Monocytes Ameliorates the Progression of Myxomatous Valve Degeneration in Marfan Syndrome.

Circulation. 2020-1-13

[10]
Polyunsaturated Fatty Acids from Astrocytes Activate PPARγ Signaling in Cancer Cells to Promote Brain Metastasis.

Cancer Discov. 2019-10-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索