Suppr超能文献

不止于表面所见:机器学习在嗅觉领域的可能性与局限性

More than meets the AI: The possibilities and limits of machine learning in olfaction.

作者信息

Barwich Ann-Sophie, Lloyd Elisabeth A

机构信息

Department of History and Philosophy of Science and Medicine, College of Arts and Sciences, Indiana University Bloomington, Bloomington, IN, United States.

Cognitive Science Program, College of Arts and Sciences, Indiana University, Bloomington, IN, United States.

出版信息

Front Neurosci. 2022 Sep 1;16:981294. doi: 10.3389/fnins.2022.981294. eCollection 2022.

Abstract

Can machine learning crack the code in the nose? Over the past decade, studies tried to solve the relation between chemical structure and sensory quality with Big Data. These studies advanced computational models of the olfactory stimulus, utilizing artificial intelligence to mine for clear correlations between chemistry and psychophysics. Computational perspectives promised to solve the mystery of olfaction with more data and better data processing tools. None of them succeeded, however, and it matters as to why this is the case. This article argues that we should be deeply skeptical about the trend to black-box the sensory system's biology in our theories of perception. Instead, we need to ground both stimulus models and psychophysical data on real causal-mechanistic explanations of the olfactory system. The central question is: Would knowledge of biology lead to a better understanding of the stimulus in odor coding than the one utilized in current machine learning models? That is indeed the case. Recent studies about receptor behavior have revealed that the olfactory system operates by principles not captured in current stimulus-response models. This may require a fundamental revision of computational approaches to olfaction, including its psychological effects. To analyze the different research programs in olfaction, we draw on Lloyd's "Logic of Research Questions," a philosophical framework which assists scientists in explicating the reasoning, conceptual commitments, and problems of a modeling approach in question.

摘要

机器学习能破解鼻子里的密码吗?在过去十年中,一些研究试图用大数据解决化学结构与感官品质之间的关系。这些研究推进了嗅觉刺激的计算模型,利用人工智能挖掘化学与心理物理学之间的明确关联。计算视角有望借助更多数据和更好的数据处理工具解开嗅觉之谜。然而,它们都没有成功,弄清楚原因很重要。本文认为,我们应该对在感知理论中将感官系统生物学黑箱化的趋势深表怀疑。相反,我们需要将刺激模型和心理物理学数据建立在对嗅觉系统真实的因果机制解释之上。核心问题是:与当前机器学习模型所采用的方式相比,生物学知识会让我们对气味编码中的刺激有更好的理解吗?确实如此。最近关于受体行为的研究表明,嗅觉系统的运作原理并未被当前的刺激 - 反应模型所涵盖。这可能需要对嗅觉的计算方法进行根本性修订,包括其心理效应。为了分析嗅觉领域的不同研究项目,我们借鉴了劳埃德的“研究问题的逻辑”,这是一个哲学框架,有助于科学家阐明所讨论的建模方法的推理、概念承诺和问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ca7/9475214/e2c1c6736cb7/fnins-16-981294-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验