Suppr超能文献

基于深度学习的在线教育资源推荐研究。

Research on Online Education Resources Recommendation Based on Deep Learning.

机构信息

School of Government, Sun Yat-sen University, Guangzhou 510275, Guangdong, China.

出版信息

Comput Intell Neurosci. 2022 Sep 9;2022:3674271. doi: 10.1155/2022/3674271. eCollection 2022.

Abstract

For the problem of knowledge overload in the process of online learning and the traditional algorithm's poor recommendation accuracy and real-time performance in the massive educational resources, a deep learning-based recommendation model for online educational resources is proposed. First, attribute features of learners and learning resources are extracted, and then text features of learning resources are extracted, and attention fusion of features at multiple different scales is performed using a multiscale fusion strategy. Finally, the fused features are used as input to the multilayer perceptron to train the classification model. Through testing a variety of educational resources, it is verified that the model in this paper has better real-time performance while maintaining high detection accuracy and outperforms the mainstream comparison model in several indexes, which have a certain application value. It provides a new way of thinking for educational platforms to build real-time educational resource recommendations.

摘要

针对在线学习过程中存在的知识过载问题以及传统算法在海量教育资源中推荐准确率和实时性差的问题,提出了一种基于深度学习的在线教育资源推荐模型。首先提取学习者和学习资源的属性特征,然后提取学习资源的文本特征,使用多尺度融合策略对多尺度特征进行注意力融合,最后将融合后的特征作为多层感知机的输入进行分类模型的训练。通过对多种教育资源进行测试,验证了本文模型在保持高检测准确率的同时具有更好的实时性能,在多个指标上优于主流对比模型,具有一定的应用价值。为教育平台构建实时教育资源推荐提供了一种新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a734/9481316/3d819a7cac54/CIN2022-3674271.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验