Rauf Sajid, Hanif Muhammad Bilal, Mushtaq Naveed, Tayyab Zuhra, Ali Nasir, Shah M A K Yousaf, Motola Martin, Saleem Adil, Asghar Muhammad Imran, Iqbal Rashid, Yang Changping, Xu Wei
College of Electronics and Information Engineering, Shenzhen University, Shenzhen, Guangdong Province 518000, China.
Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 84215, Slovakia.
ACS Appl Mater Interfaces. 2022 Sep 28;14(38):43067-43084. doi: 10.1021/acsami.2c06565. Epub 2022 Sep 19.
Achieving fast ionic conductivity in the electrolyte at low operating temperatures while maintaining the stable and high electrochemical performance of solid oxide fuel cells (SOFCs) is challenging. Herein, we propose a new type of electrolyte based on perovskite SrPrFeTiO for low-temperature SOFCs. The ionic conducting behavior of the electrolyte is modulated using Mg doping, and three different SrPrFeMgTiO ( = 0, 0.1, and 0.2) samples are prepared. The synthesized SrPrFeMgTiO (SPFMgT) proved to be an optimal electrolyte material, exhibiting a high ionic conductivity of 0.133 S cm along with an attractive fuel cell performance of 0.83 W cm at 520 °C. We proved that a proper amount of Mg doping (20%) contributes to the creation of an adequate number of oxygen vacancies, which facilitates the fast transport of the oxide ions. Considering its rapid oxide ion transport, the prepared SPFMgT presented heterostructure characteristics in the form of an insulating core and superionic conduction via surface layers. In addition, the effect of Mg doping is intensively investigated to tune the band structure for the transport of charged species. Meanwhile, the concept of energy band alignment is employed to interpret the working principle of the proposed electrolyte. Moreover, the density functional theory is utilized to determine the perovskite structures of SrTiO and SrPrFeMgTiO ( = 0, 0.1, and 0.2) and their electronic states. Further, the SPFMgT with 20% Mg doping exhibited low dissociation energy, which ensures the fast and high ionic conduction in the electrolyte. Inclusively, SrPrFeTiO is a promising electrolyte for SOFCs, and its performance can be efficiently boosted via Mg doping to modulate the energy band structure.
在低温运行温度下实现电解质的快速离子传导性,同时保持固体氧化物燃料电池(SOFC)稳定且高的电化学性能具有挑战性。在此,我们提出一种基于钙钛矿SrPrFeTiO的新型低温SOFC电解质。通过Mg掺杂调节电解质的离子传导行为,并制备了三种不同的SrPrFeMgTiO( = 0、0.1和0.2)样品。合成的SrPrFeMgTiO(SPFMgT)被证明是一种最佳的电解质材料,在520℃时表现出0.133 S cm的高离子传导率以及0.83 W cm的诱人燃料电池性能。我们证明适量的Mg掺杂(20%)有助于产生足够数量的氧空位,这有利于氧离子的快速传输。考虑到其快速的氧离子传输,制备的SPFMgT呈现出绝缘核心和通过表面层的超离子传导形式的异质结构特征。此外,深入研究了Mg掺杂的效果以调节带电物种传输的能带结构。同时,采用能带对齐的概念来解释所提出电解质的工作原理。此外,利用密度泛函理论确定SrTiO和SrPrFeMgTiO( = 0、0.1和0.2)的钙钛矿结构及其电子态。进一步地,20% Mg掺杂的SPFMgT表现出低离解能,这确保了电解质中快速且高的离子传导。总之,SrPrFeTiO是一种有前途的SOFC电解质,通过Mg掺杂调节能带结构可以有效提高其性能。