Dong Yiwang, Mushtaq Naveed, Shah Muhammad A K Yousaf, Yousaf Muhammad, Lu Yuzheng, Cao Peng, Ma Qing, Deng Changhong
School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China.
Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology/Energy Storage Joint Research Center, School of Energy and Environment, Southeast University, No. 2 Si Pai Lou, Nanjing 210096, China.
Nanomaterials (Basel). 2023 Jun 19;13(12):1887. doi: 10.3390/nano13121887.
Improving the ionic conductivity and slow oxygen reduction electro-catalytic activity of reactions occurring at low operating temperature would do wonders for the widespread use of low-operating temperature ceramic fuel cells (LT-CFCs; 450-550 °C). In this work, we present a novel semiconductor heterostructure composite made of a spinel-like structure of CoMnFeAlO (CMFA) and ZnO, which functions as an effective electrolyte membrane for solid oxide fuel cells. For enhanced fuel cell performance at sub-optimal temperatures, the CMFA-ZnO heterostructure composite was developed. We have shown that a button-sized SOFC fueled by H and ambient air can provide 835 mW/cm of power and 2216 mA/cm of current at 550 °C, possibly functioning down to 450 °C. In addition, the oxygen vacancy formation energy and activation energy of the CMFA-ZnO heterostructure composite is lower than those of the individual CMFA and ZnO, facilitating ion transit. The improved ionic conduction of the CMFA-ZnO heterostructure composite was investigated using several transmission and spectroscopic measures, including X-ray diffraction, photoelectron, and UV-visible spectroscopy, and density functional theory (DFT) calculations. These findings suggest that the heterostructure approach is practical for LT-SOFCs.
提高在低温运行时发生的反应的离子电导率和缓慢的氧还原电催化活性,对于低温陶瓷燃料电池(LT-CFCs;450-550°C)的广泛应用将产生巨大的推动作用。在这项工作中,我们展示了一种由CoMnFeAlO(CMFA)的尖晶石状结构和ZnO制成的新型半导体异质结构复合材料,它可作为固体氧化物燃料电池的有效电解质膜。为了在次优温度下提高燃料电池性能,我们开发了CMFA-ZnO异质结构复合材料。我们已经表明,一个由氢气和环境空气供电的纽扣大小的固体氧化物燃料电池在550°C时可提供835 mW/cm的功率和2216 mA/cm的电流,甚至在低至450°C时也可能正常工作。此外,CMFA-ZnO异质结构复合材料的氧空位形成能和活化能低于单独的CMFA和ZnO,有利于离子传输。我们使用多种透射和光谱测量方法,包括X射线衍射、光电子能谱和紫外可见光谱以及密度泛函理论(DFT)计算,对CMFA-ZnO异质结构复合材料改善的离子传导进行了研究。这些发现表明,异质结构方法对于低温固体氧化物燃料电池是可行的。