Suppr超能文献

具有微/纳米级析出的铸态CoCrCuMnNi高熵合金强化与变形行为的支撑数据

Supporting data for strengthening and deformation behavior of as-cast CoCrCuMnNi high entropy alloy with micro-/nanoscale precipitation.

作者信息

Shim Sang Hun, Pouraliakbar Hesam, Lee Byung Ju, Kim Yong Keun, Rizi Mohsen Saboktakin, Han Jun Hyun, Hong Sun Ig

机构信息

Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.

出版信息

Data Brief. 2022 Sep 1;45:108567. doi: 10.1016/j.dib.2022.108567. eCollection 2022 Dec.

Abstract

The data presented here are related to the research article entitled "Strengthening and deformation behavior of as-cast CoCrCuMnNi high-entropy alloy (HEA) with micro-/nanoscale precipitation [1]". Non-equimolar CoCrCuMnNi was cast by the conventional induction melting under a high-purity Ar atmosphere. Scanning electron microscopy equipped with energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM) were used for micro- and nanostructure characterization. Subsize tensile specimens with two different gage length to width ratio were tested at room and cryogenic temperatures to assess the accuracy of strength and ductility data in the as-cast CoCrCuMnNi HEAs. The mixing enthalpy (ΔH) versus lattice elastic energy (ΔH) criterion was used to predict the stable phases. The data on the effects of microstructural and nanostructural distribution of various phases on mechani-cal properties in the as-cast HEA could be used in designing high entropy alloys with excellent as-cast mechanical performance.

摘要

此处呈现的数据与题为《具有微/纳米级析出相的铸态CoCrCuMnNi高熵合金(HEA)的强化与变形行为》的研究文章相关[1]。非等摩尔CoCrCuMnNi在高纯氩气气氛下通过传统感应熔炼铸造而成。配备能量色散光谱仪(EDS)的扫描电子显微镜和透射电子显微镜(TEM)用于微观和纳米结构表征。对具有两种不同标距长度与宽度比的小尺寸拉伸试样在室温和低温下进行测试,以评估铸态CoCrCuMnNi高熵合金中强度和延展性数据的准确性。混合焓(ΔH)与晶格弹性能(ΔH)准则用于预测稳定相。铸态高熵合金中各相的微观结构和纳米结构分布对力学性能影响的数据可用于设计具有优异铸态力学性能的高熵合金。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec26/9482126/2a8cea3e492b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验