Suppr超能文献

分形分数阶免疫效应器对潜伏感染组织中病毒感染的随机动力学的新研究。

Novel stochastic dynamics of a fractal-fractional immune effector response to viral infection via latently infectious tissues.

机构信息

Department of Mathematics, Government College University, Faisalabad 38000, Pakistan.

Department of Mathematics, Lahore College for Women University, Lahore, Pakistan.

出版信息

Math Biosci Eng. 2022 Aug 12;19(11):11563-11594. doi: 10.3934/mbe.2022539.

Abstract

In this paper, the global complexities of a stochastic virus transmission framework featuring adaptive response and Holling type II estimation are examined via the non-local fractal-fractional derivative operator in the Atangana-Baleanu perspective. Furthermore, we determine the existence-uniqueness of positivity of the appropriate solutions. Ergodicity and stationary distribution of non-negative solutions are carried out. Besides that, the infection progresses in the sense of randomization as a consequence of the response fluctuating within the predictive case's equilibria. Additionally, the extinction criteria have been established. To understand the reliability of the findings, simulation studies utilizing the fractal-fractional dynamics of the synthesized trajectory under the Atangana-Baleanu-Caputo derivative incorporating fractional-order α and fractal-dimension ℘ have also been addressed. The strength of white noise is significant in the treatment of viral pathogens. The persistence of a stationary distribution can be maintained by white noise of sufficient concentration, whereas the eradication of the infection is aided by white noise of high concentration.

摘要

本文通过非局部分形分数导数算子在 Atangana-Baleanu 视角下,研究了具有适应性反应和 Holling Ⅱ型估计的随机病毒传播框架的全局复杂性。此外,我们确定了适当解的正定性存在唯一性。进行了非负解的遍历性和平稳分布。除此之外,由于预测平衡内的响应波动,感染会随机进行。此外,还建立了灭绝标准。为了理解研究结果的可靠性,还利用在 Atangana-Baleanu-Caputo 导数下合成轨迹的分形分数动力学,以及包含分数阶 α 和分形维数 ℘的分数导数,进行了基于仿真的研究。白噪声的强度在病毒病原体的处理中非常重要。足够浓度的白噪声可以维持平稳分布的持久性,而高浓度的白噪声有助于消除感染。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验