Ferrari Piero, Gómez-Coca Silvia
Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200d, 3001, Leuven, Belgium.
Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands.
Phys Chem Chem Phys. 2022 Oct 5;24(38):23128-23134. doi: 10.1039/d2cp03643f.
The magnetism of transition metal clusters has been for decades a complicated puzzle, with experimental results disagreeing with calculations performed within the density functional theory formalism. In this work, we provide a key to this puzzle by investigating the lowest-energy spin states of cobalt cluster, Co ( ≤ 5), using CASSCF/NEVPT2 calculations with very large active spaces. The geometries as well as the spin configurations adopted by the clusters in their ground-state are known from experiments, making Co clusters an ideal model system for theoretical investigation. Here, using the experimentally known geometries determined by far-infrared spectroscopy as inputs, we calculated the lowest-energy spin configurations of the clusters, revealing that the CASSCF/NEVPT2 formalism correctly predicts the preferred electronic configuration of the clusters known experimentally. This is in contrast to the widely used density functional theory, with results that depend on the selected exchange-correlation functional. The reasons for the failure of density functional theory, in opposition to CASSCF/NEVPT2, are discussed, providing a solid framework for investigating other transition metal and transition metal oxide clusters.
几十年来,过渡金属团簇的磁性一直是一个复杂的谜题,实验结果与在密度泛函理论形式体系内进行的计算结果不一致。在这项工作中,我们通过使用具有非常大活性空间的CASSCF/NEVPT2计算方法研究钴团簇Co(≤5)的最低能量自旋态,为这个谜题提供了一把钥匙。团簇在基态所采用的几何结构以及自旋构型可从实验中得知,这使得钴团簇成为理论研究的理想模型体系。在这里,我们以通过远红外光谱确定的实验已知几何结构作为输入,计算了团簇的最低能量自旋构型,结果表明CASSCF/NEVPT2形式体系正确地预测了实验中已知的团簇的优选电子构型。这与广泛使用的密度泛函理论形成对比,后者的结果取决于所选的交换关联泛函。我们讨论了密度泛函理论与CASSCF/NEVPT2相比失败的原因,为研究其他过渡金属和过渡金属氧化物团簇提供了一个坚实的框架。