Suppr超能文献

利用深度强化学习构建量子控制动力学的时间相关最优场。

Harnessing deep reinforcement learning to construct time-dependent optimal fields for quantum control dynamics.

作者信息

Gao Yuanqi, Wang Xian, Yu Nanpeng, Wong Bryan M

机构信息

Department of Electrical and Computer Engineering, University of California-Riverside, Riverside, CA, USA.

Department of Physics and Astronomy, University of California-Riverside, Riverside, CA, USA.

出版信息

Phys Chem Chem Phys. 2022 Oct 12;24(39):24012-24020. doi: 10.1039/d2cp02495k.

Abstract

We present an efficient deep reinforcement learning (DRL) approach to automatically construct time-dependent optimal control fields that enable desired transitions in dynamical chemical systems. Our DRL approach gives impressive performance in constructing optimal control fields, even for cases that are difficult to converge with existing gradient-based approaches. We provide a detailed description of the algorithms and hyperparameters as well as performance metrics for our DRL-based approach. Our results demonstrate that DRL can be employed as an effective artificial intelligence approach to efficiently and autonomously design control fields in quantum dynamical chemical systems.

摘要

我们提出了一种高效的深度强化学习(DRL)方法,用于自动构建随时间变化的最优控制场,以实现动态化学系统中的期望跃迁。我们的DRL方法在构建最优控制场方面表现出色,即使对于现有基于梯度的方法难以收敛的情况也是如此。我们详细描述了基于DRL方法的算法、超参数以及性能指标。我们的结果表明,DRL可以作为一种有效的人工智能方法,在量子动态化学系统中高效且自主地设计控制场。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验