Suppr超能文献

使用钆塞酸二钠增强MRI的影像组学和机器学习模型预测肝细胞癌病理分级:一项双中心研究

Hepatocellular carcinoma pathologic grade prediction using radiomics and machine learning models of gadoxetic acid-enhanced MRI: a two-center study.

作者信息

Han Yeo Eun, Cho Yongwon, Kim Min Ju, Park Beom Jin, Sung Deuk Jae, Han Na Yeon, Sim Ki Choon, Park Yang Shin, Park Bit Na

机构信息

Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.

AI Center, Korea University Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.

出版信息

Abdom Radiol (NY). 2023 Jan;48(1):244-256. doi: 10.1007/s00261-022-03679-y. Epub 2022 Sep 21.

Abstract

PURPOSE

To develop a radiomics-based hepatocellular carcinoma (HCC) grade classifier model based on data from gadoxetic acid-enhanced MRI.

METHODS

This retrospective study included 137 patients who underwent hepatectomy for a single HCC and gadoxetic acid-enhanced MRI within 60 days before surgery. HCC grade was categorized as low or high (modified Edmondson-Steiner grade I-II vs. III-IV). We used the hepatobiliary phase (HBP), portal venous phase, T2-weighted image(T2WI), and T1-weighted image(T1WI). From the volume of interest in HCC, 833 radiomic features were extracted. Radiomic and clinical features were selected using a random forest regressor, and the classification model was trained and validated using a random forest classifier and tenfold stratified cross-validation. Eight models were developed using the radiomic features alone or by combining the radiomic and clinical features. Models were validated with internal enrolled data (internal validation) and a dataset (28 patients) at a separate institution (external validation). The area under the curve (AUC) of the validation results was compared using the DeLong test.

RESULTS

In internal and external validation, the HBP radiomics-only model showed the highest AUC (internal 0.80 ± 0.09, external 0.70 ± 0.09). In external validation, all models showed lower AUC than those for internal validation, while the T2WI and T1WI models failed to predict the HCC grade (AUC 0.30-0.58) in contrast to the internal validation results (AUC 0.67-0.78).

CONCLUSION

The radiomics-based machine learning model from gadoxetic acid-enhanced liver MRI could distinguish between low- and high-grade HCCs. The radiomics-only HBP model showed the best AUC among the eight models, good performance in internal validation, and fair performance in external validation.

摘要

目的

基于钆塞酸增强MRI数据开发一种基于影像组学的肝细胞癌(HCC)分级分类模型。

方法

这项回顾性研究纳入了137例因单发HCC接受肝切除术且术前60天内接受钆塞酸增强MRI检查的患者。HCC分级分为低级别或高级别(改良Edmondson-Steiner分级I-II级与III-IV级)。我们使用了肝胆期(HBP)、门静脉期、T2加权成像(T2WI)和T1加权成像(T1WI)。从HCC的感兴趣体积中提取了833个影像组学特征。使用随机森林回归器选择影像组学和临床特征,并使用随机森林分类器和十折分层交叉验证对分类模型进行训练和验证。使用单独的影像组学特征或通过结合影像组学和临床特征开发了八个模型。使用内部纳入数据(内部验证)和来自另一家机构的数据集(28例患者)(外部验证)对模型进行验证。使用DeLong检验比较验证结果的曲线下面积(AUC)。

结果

在内部和外部验证中,仅HBP影像组学模型显示出最高的AUC(内部0.80±0.09,外部0.70±0.09)。在外部验证中,所有模型的AUC均低于内部验证,而与内部验证结果(AUC 0.67-0.78)相比,T2WI和T1WI模型未能预测HCC分级(AUC 0.30-0.58)。

结论

基于钆塞酸增强肝脏MRI的影像组学机器学习模型可以区分低级别和高级别HCC。仅影像组学的HBP模型在八个模型中显示出最佳的AUC,在内部验证中表现良好,在外部验证中表现尚可。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验