Suppr超能文献

利用放射组学和人工智能进行肝脏恶性肿瘤的精准诊断和预后评估。

Leveraging radiomics and AI for precision diagnosis and prognostication of liver malignancies.

作者信息

Haghshomar Maryam, Rodrigues Darren, Kalyan Aparna, Velichko Yury, Borhani Amir

机构信息

Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.

出版信息

Front Oncol. 2024 May 8;14:1362737. doi: 10.3389/fonc.2024.1362737. eCollection 2024.

Abstract

Liver tumors, whether primary or metastatic, have emerged as a growing concern with substantial global health implications. Timely identification and characterization of liver tumors are pivotal factors in order to provide optimum treatment. Imaging is a crucial part of the detection of liver tumors; however, conventional imaging has shortcomings in the proper characterization of these tumors which leads to the need for tissue biopsy. Artificial intelligence (AI) and radiomics have recently emerged as investigational opportunities with the potential to enhance the detection and characterization of liver lesions. These advancements offer opportunities for better diagnostic accuracy, prognostication, and thereby improving patient care. In particular, these techniques have the potential to predict the histopathology, genotype, and immunophenotype of tumors based on imaging data, hence providing guidance for personalized treatment of such tumors. In this review, we outline the progression and potential of AI in the field of liver oncology imaging, specifically emphasizing manual radiomic techniques and deep learning-based representations. We discuss how these tools can aid in clinical decision-making challenges. These challenges encompass a broad range of tasks, from prognosticating patient outcomes, differentiating benign treatment-related factors and actual disease progression, recognizing uncommon response patterns, and even predicting the genetic and molecular characteristics of the tumors. Lastly, we discuss the pitfalls, technical limitations and future direction of these AI-based techniques.

摘要

肝脏肿瘤,无论是原发性还是转移性,都已成为一个日益受到关注的问题,对全球健康具有重大影响。及时识别和表征肝脏肿瘤是提供最佳治疗的关键因素。影像学是肝脏肿瘤检测的重要组成部分;然而,传统影像学在这些肿瘤的准确表征方面存在不足,这导致需要进行组织活检。人工智能(AI)和放射组学最近作为研究机会出现,有可能提高肝脏病变的检测和表征能力。这些进展为提高诊断准确性、预后判断提供了机会,从而改善患者护理。特别是,这些技术有可能根据影像学数据预测肿瘤的组织病理学、基因型和免疫表型,从而为这类肿瘤的个性化治疗提供指导。在本综述中,我们概述了人工智能在肝脏肿瘤影像学领域的进展和潜力,特别强调了手动放射组学技术和基于深度学习的表征。我们讨论了这些工具如何有助于应对临床决策挑战。这些挑战涵盖了广泛的任务,从预测患者预后、区分良性治疗相关因素和实际疾病进展、识别不常见的反应模式,甚至预测肿瘤的遗传和分子特征。最后,我们讨论了这些基于人工智能的技术的陷阱、技术局限性和未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226a/11109422/4030ce12489f/fonc-14-1362737-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验